Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 165799 dokumen yang sesuai dengan query
cover
Bayu Tri Iksani
Depok: Fakultas Teknik Universitas Indonesia, 1998
S39403
UI - Skripsi Membership  Universitas Indonesia Library
cover
I Gde Angga Surjana
"Pengelompokan nasabah asuransi berdasarkan Self-Organizing Map (SOM) dan analisis cluster hierarki I Gde Angga Surjana (0399010211) Self-Organizing Map (SOM) merupakan metode pengelompokan yang dapat digunakan untuk memvisualisasikan sekaligus mengeksplorasi karakteristik data. Kombinasi antara SOM dan analisis cluster hierarki dapat menjadi metode pengelompokan yang efektif apabila digunakan pada data yang berukuran relatif besar, seperti pada data nasabah dari suatu perusahaan asuransi. Kedua metode ini digunakan untuk membentuk kelompok nasabah berdasarkan produk asuransi yang diikuti agar perusahaan dapat mengidentifikasi kebutuhan para nasabahnya akan asuransi. Hasil pengelompokan dari kedua metode ini adalah tiga kelompok utama, yaitu kelompok nasabah yang sadar asuransi, kelompok nasabah asuransi jiwa dan kelompok nasabah satu jenis asuransi tertentu. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2005
S27606
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Rizki
"[ABSTRAK
Penelitian ini terdiri dari dua tahap. Growing self-organizing map (GSOM) algorithm dan
hybrid bee colony optimization (BCO) dan self-organizing map (SOM) untuk mengimprove
SOM performance. Pada tahap pertama GSOM digunakan untuk menentukan SOM topology
dan pada tahap kedua, hybrid BCOSOM digunakan untuk mengadjust SOM weights. Metode
BCOSOM akan dibandingkan dengan metode PSO, BCO, SOM, PSOSOM, SOM+PSO, dan
SOM+BCO dengan menggunakan 4 benchmark data sets (Iriss, Glass, Wine, dan Vowel).
Dari hasil komputasi menunjukkan bahwa metode BCOSOM dapat mencari solusi yang lebih
baik dari algoritma lainnya. Dari hasil tersebut, BCOSOM digunakan pada Group
Technology untuk menentukan part families pada komponen plat disebuah perusahaan
medical furniture di Yogyakarta.

ABSTRACT
ABSTRACT This research proposes a two stage method growing self organizing map GSOM algorithm and bee colony optimization BCO based self organizing map BSOSOM to improve SOM performance In the first stage GSOM is used to determine the SOM topology and then followed by BCOSOM to fine tune the SOM weights The proposed BCOSOM algorithm is compared with other algorithms PSO BCO SOM PSOSOM SOM PSO and SOM BCO using four benchmark data sets Iris Glass Wine and Vowel The computational result indicates that BCOSOM algorithm is able to find a better solution than other algorithms Furthermore the proposed algorithm has been also employed to Group Technology to cluster components into part families for a medical manufacture in Indonesia ; ABSTRACT This research proposes a two stage method growing self organizing map GSOM algorithm and bee colony optimization BCO based self organizing map BSOSOM to improve SOM performance In the first stage GSOM is used to determine the SOM topology and then followed by BCOSOM to fine tune the SOM weights The proposed BCOSOM algorithm is compared with other algorithms PSO BCO SOM PSOSOM SOM PSO and SOM BCO using four benchmark data sets Iris Glass Wine and Vowel The computational result indicates that BCOSOM algorithm is able to find a better solution than other algorithms Furthermore the proposed algorithm has been also employed to Group Technology to cluster components into part families for a medical manufacture in Indonesia ; ABSTRACT This research proposes a two stage method growing self organizing map GSOM algorithm and bee colony optimization BCO based self organizing map BSOSOM to improve SOM performance In the first stage GSOM is used to determine the SOM topology and then followed by BCOSOM to fine tune the SOM weights The proposed BCOSOM algorithm is compared with other algorithms PSO BCO SOM PSOSOM SOM PSO and SOM BCO using four benchmark data sets Iris Glass Wine and Vowel The computational result indicates that BCOSOM algorithm is able to find a better solution than other algorithms Furthermore the proposed algorithm has been also employed to Group Technology to cluster components into part families for a medical manufacture in Indonesia , ABSTRACT This research proposes a two stage method growing self organizing map GSOM algorithm and bee colony optimization BCO based self organizing map BSOSOM to improve SOM performance In the first stage GSOM is used to determine the SOM topology and then followed by BCOSOM to fine tune the SOM weights The proposed BCOSOM algorithm is compared with other algorithms PSO BCO SOM PSOSOM SOM PSO and SOM BCO using four benchmark data sets Iris Glass Wine and Vowel The computational result indicates that BCOSOM algorithm is able to find a better solution than other algorithms Furthermore the proposed algorithm has been also employed to Group Technology to cluster components into part families for a medical manufacture in Indonesia ]"
Salemba: Fakultas Teknik Universitas Indonesia, 2014
T43172
UI - Tesis Membership  Universitas Indonesia Library
cover
Annisaa Primadini
"Jaringan Saraf Tiruan adalah salah satu metode baru yang dikembangkan untuk pemecahan berbagai masalah kompleks yang tidak dapat diselesaikan secara analitik. Salah satu pengembangannya adalah metode jaringan saraf pembelajaran Radial Basis Function, dengan metode inisialisasi bobot Nguyen-Widrow dan Orthogonal Least Square (OLS). Akurasi dan kecepatan pembelajaran yang dimiliki oleh Radial Basis Function (RBF) sangat menarik untuk diaplikasikan pada sistem kendali. Pemodelan Forward dan Invers sistem dilakukan dengan metode RBF dengan mengambil data sistem SISO Pressure Process Rig. Setelah dilakukan pemodelan, jaringan saraf tiruan akan diuji dengan Direct Inverse Test. Hasil identifikasi sistem dan identifikasi invers pada sistem Pressure Process Rig memiliki hasil yang baik. Begitu pula saat diuji coba dengan Direct Inverse Test, sistem kendali mempunyai performa cukup baik, namun tidak menutup kemungkinan adanya skema model lain yang dapat digunakan dalam pemodelan sistem.

Artificial Neural Network is a newer field of study that could solve any complex problem that could not be done by analytical solution. Radial Basis Function (RBF) is one of the newer method of Artificial Neural Network with two distinct weight initialization method ; Nguyen-Widrow and Orthogonal Least Square (OLS) methods. RBF?s high recognition rate and very fast learning speed are interesting enough to be used in control system. RBF is used in forward and inverse identification in modelling Pressure Process Rig system. Direct Inverse Test is also done in order to make sure Radial Basis Function perform well in identifying a particular system. Radial Basis Function had a great perfomance in both forward and inverse system identification and also in Direct Inverse Test, but it is possible to have another learning scheme in system modelling.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S55173
UI - Skripsi Membership  Universitas Indonesia Library
cover
Millati Indah
"Salah satu misi pembangunan adalah mewujudkan kualitas hidup manusia Indonesia yang tinggi, maju, dan sejahtera, dengan salah satu agenda prioritasnya meningkatkan kualitas hidup manusia Indonesia. Untuk mengevaluasi terlaksananya misi dan agenda prioritas tersebut diperlukan indikator yang terukur. Hasil evaluasi tersebut dapat dijadikan pertimbangan dalam membuat kebijakan untuk memperbaiki tingkat kesejahteraan.
Salah satu pengukuran yang dapat digunakan adalah Indikator Kesejahteraan Rakyat (Inkesra) yang disusun Badan Pusat Statistik (BPS) yang diolah dari data Survei Sosial Ekonomi Nasional (SUSENAS). Indikator ini mengukur kesejahteraan dengan menggunakan pendekatan kebutuhan dasar (basic needs).
Untuk mengukur perubahan tingkat kesejahteraan kabupaten/kota, perlu dilakukan analisis perpindahan cluster dari periode ke periode. Salah satu metode yang dapat digunakan untuk melakukan clustering adalah Self-organizing Maps (SOM). Hasil clustering dengan SOM kemudian dapat dianalisis menggunakan Relative Density Self-Organizing Maps (ReDSOM).
Variabel yang digunakan pada penelitian ini sebanyak 22 variabel dengan jumlah record 497 kabupaten/kota. Data yang dibandingkan adalah data tahun 2011 dan 2014. Dari hasil penelitian ini terdapat enam cluster pada tahun 2011 dan tujuh cluster pada tahun 2014. Variabel yang berubah secara signifikan pada sebagian besar perpindahan cluster adalah Angka Partisipasi Sekolah.

One of the development goal is to improve Indonesian people’s quality of life including welfare. A measurable indicator is needed to evaluate the realisation of the goal. The evaluation results can be used to make beter policy to improve welfare.
In Indonesia we can use Welfare Indicator (Indikator Kesejahteraan Rakyat/Inkesra) to measure welfare. This indicator is based on basic needs. This indicator is processed from SUSENAS.
To measure welfare improvement, we need to analyze cluster change over periods. A method that can be used clustering is Self-organizing Maps (SOM). Based on clustering result of data from different period, we can analyze cluster change.
This research used 22 variables and 497 records. The result of this research is regencies/municipalities in 2011 can be divided into six clusters and seven clusters in 2014. Variable that changed significantly in most of migrated clusters is School Participation.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2016
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Martha Christina
"Bank yang menyelenggarakan program keuangan inklusif cenderung tidak melakukan diferensiasi pelayanan bagi para pelanggannya yang berasal dari populasi masyarakat unbanked. Banyak organisasi mengganggap segmen keuangan inklusif sebagai ladang yang kurang populer dalam mendapatkan keuntungan, karena kecilnya pemasukan dan besarnya biaya operasional yang dibutuhkan. Namun, beberapa studi sebelumnya tentang keuangan inklusif dan segmentasi pelanggan telah menentang gagasan ini dan menyatakan bahwa klasifikasi lebih lanjut terhadap kategori pelanggan khusus ini dapat membawa keuntungan bagi pihak bank. Segmentasi pelanggan sering dilakukan menggunakan model Recency, Frequency, dan Monetary (RFM) untuk mendapatkan nilai pelanggan bagi perusahaan.
Penelitian ini bertujuan untuk membuat model prediksi segmen pelanggan dalam konteks keuangan inklusif, dengan menerapkan penggunaan dua teknik data mining Self-Organizing Map (SOM) dan C5.0 decision tree (DT) secara hybrid. Analisa sosioekonomi, regional, dan pengeluaran digunakan untuk menilai pelanggan, alih-alih menggunakan RFM. Penelitian ini juga mempelajari pengaruh SOM terhadap kinerja klasifikasi keseluruhan, yang dievaluasi menggunakan confusion matrix. Dataset yang digunakan memiliki struktur generik sehingga model ini diharapkan dapat membantu pengembangan program keuangan inklusif pada institusi keuangan penyelenggara keuangan inklusif lainnya.

Banks adopting financial inclusion program often exclude differentiation in their services towards the target customers. Many organizations consider financial inclusion inflicts huge operational costs hence it is deemed infamous for profit gain. Previous studies in financial inclusion and customer segmentation have challenged this notion, concluding that further classification of this particular customer class could indeed bring profit for the bank and such that maintaining existing profiting customers induce less cost than the effort of acquiring new customers. Customer segmentation is often done using the Recency, Frequency and Monetary (RFM) model to assess a customer's value for the company.
This study aims to model customer segment predictions in the context of financial inclusion, using socioeconomic, regional, and expenditure analyses to assess customer values. Two data mining techniques Self-Organizing Map (SOM) and C5.0 decision tree (DT) are used in a hybrid setting. This study also observes the effect of SOM on overall classification performance, which is evaluated using confusion matrix. Due to the generality of the input dataset, the prediction model is expected to be usable, with minimal adjustments, by other financial inclusion institutions in need of customer segmentation.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
T54216
UI - Tesis Membership  Universitas Indonesia Library
cover
Fakhrul Agustriwan
"ABSTRAK
Peramalan trafik internet merupakan salah satu pendekatan yang dapat diterapkan oleh penyedia jasa internet dalam menjaga dan meningkatkan kualitas pelayanan internet yang ditawarkan. Pada penelitian ini, digunakan metode peramalan berupa kombinasi algoritma self organizing map (SOM) dan support vector regression (SVR). Metode SOM digunakan untuk membagi data historis trafik internet secara keseluruhan ke dalam beberapa cluster, sedangkan metode SVR digunakan untuk membentuk model peramalan pada setiap cluster yang terbentuk. Hasil peramalan data trafik internet pada penelitian ini menunjukkan bahwa model peramalan dengan metode SOM-SVR dapat memberikan prediksi yang lebih akurat terkait nilai error yang lebih kecil dibandingkan dengan metode SVR tunggal.

ABSTRACT
Traffic internet forecasting is one kind of approaches which can be implemented by internet service provider in order to keep and improve the offered internet service quality. This research uses the combination of self organizing map (SOM) and support vector regression (SVR) algorithm as forecasting method. SOM is first used to decompose the whole historical data of traffic internet into some clusters, while SVR is used to build a forecasting model in each formed cluster. The forecasting results of internet traffic data in this research show that the forecasting model by using SOM-SVR method can give more accurate prediction in terms of smaller error value compared to single SVR method.
"
2015
S59440
UI - Skripsi Membership  Universitas Indonesia Library
cover
Satrio Wibowo
"Masalah kependudukan di Indonesia pada hakekatnya menyangkut tiga aspek yaitu aspek kuantitas, aspek kualitas dan aspek mobilitas. Saat ini dari aspek kuantitas, Indonesia memiliki jumlah penduduk yang sangat besar yang mencapai angka 237,6 juta jiwa pada tahun 2010. Badan Kependudukan dan Keluarga Berencana Nasional (BKKBN) sebagai lembaga yang melaksanakan pengendalian penduduk dan menyelenggarakan keluarga berencana tidak dapat memenuhi target jumlah peserta KB sebesar 65% dari wanita usia subur berstatus menikah.
Penelitian ini melakukan clustering kabupaten/kota di Indonesia berdasarkan capaian program keluarga berencana dengan tujuan untuk mengetahui karakteristiknya. Variabel yang digunakan pada penelitian ini sebanyak 21 variabel yang diturunkan dari indicator kinerja BKKBN dan factor yang mempengaruhi penggunaan kontrasepsi yang dikemukakan oleh Berthrand.
Metode clustering yang digunakan dalam penelitian ini adalah data mining dengan menggunakan algoritma Self-Organizing Maps (SOM). Hasil dari penelitian ini menunjukkan bahwa teknik data mining clustering dengan algoritma SOM, berhasil mengelompokkan Indonesia ke dalam enam klaster pada data set tahun 2010, yang kemudian dilakukan identifikasi karakterristik wilayah tersebut sesuai dengan variabel yang mencirikan kondisi wilayahnya. Kondisi tahun 2010 ini digunakan sebagai dasar untuk melihat perkembangan capaian program keluarga berencana tiap tahunnya pada periode tahun 2010-2013.
Perbandingan data set antar tahun pada periode tahun 2010 sampai tahun 2013 dengan menggunakan relative denstity mampu secara otomatis mendeteksi perubahan struktur klaster berupa klaster yang menghilang, muncul, membelah, bergabung, membesar, dan mengecil dari klaster sebelumnya. Perpindahan klaster ini dapat digunakan untuk mendeteksi perubahan hasil capaian program keluarga berencana serta memberikan rekomendasi program berdasarkan hasil capaian program keluarga berencana.

Indonesian population’s problem is to three aspects ; quantity, quality, and mobility. Currently from quantity aspect, Indonesia has 237,6 million people in 2010. National Population and Family Planning Board (BKKBN) as an institution which controlling population and administering family planning unable to meet the 65% birth control target from married fertile woman.
This research conducted clustering in district / cities in Indonesia based on the family planning program performance with a purpose to know the characteristics. 21 Variables used for this research variable derived from BKKBN performance indicator and factor that affects the use of contraception, presented by Berthrand.
Clustering methods used in research is data mining with algorithm Self-Organizing Maps ( SOM ).The result of the research indicated that data mining clustering with algorithms SOM technic managed to classify Indonesia into six cluster on 2010 data set, then conduct region identification based on variable that characterizes their area condition. The 2010 condition used as a basic to predicts family planning program developments annually in the period 2010-2013.
Comparative data set between 2010-2013 period using relative density could automatically detect structure of cluster change that were disappearing, emerging, splitting, merging, enlarging, and shrinking from previous cluster. Cluster displacement can be used to detect result changes from the family planning program and give recommendation based on the family planning program result.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2016
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Hafshoh Mahmudah
"pertumbuhan ekonomi merupakan salah satu faktor penting untuk menentukan kesejahteraan suatu wilayah. akan tetapi, perbedaan kondisi geografis dan potensi wilayah menyebabkan perbedaan kondisi ekonomi yang berbeda antarwilayah. studi kasus dilakukan terhadap Provinsi Jawa Tengah karena merupakan salah satu kontributor PDRB terbesar di Indonesia, yang ternyata masih memiliki ketimpangan perekonomian antar kota dan antar kabupaten. untuk memudahkan visualisasi pertumbuhan dan penggerombolan dalam wilayah Provinsi Jawa Tengah tersebut. metode yang bisa digunakan untuk analisis gerombol sangat beragam. salah satu metode Self Organizing Map (SOM) yang mampu menggerombolkan data multidimensi disertai dengan visualisasinya dengan teknik Unsupervised Artifical Neural Network. aplikasi ini memudahkan visualisasi dan analisisnya karena diintegrasikan dengan Sistem Informasi Geografis (SIG). aplikasi yang dibuat selanjutnya digunakan untuk melakukan analisis gerombol dengan data studi kasus Provinsi Jawa Tengah. Visualisasi yang dihasilkan mampu menunjukkan pola pertumbuhan ekonomi di Provinsi Jawa Tengah namun belum terlihat adanya pemusatan kutub pertumbuhan ekonomi di Provinsi Jawa Tengah karena pola penggerombolan berdasarkan indikator pertumbuhan ekonomi masih menyebar."
Sekolah Tinggi Ilmu Statistik, {s.a.}
315 JASKS 7:2 (2015)
Artikel Jurnal  Universitas Indonesia Library
cover
Paskalis Nandana Yestha Nabhastala
"Penelitian yang dilakukan berupa pengembangan terhadap sistem pendeteksi plagiarisme otomatis sehingga dapat menerapkan jaringan saraf tiruan Self-Organizing Map SOM untuk melakukan klasifikasi terhadap hasil keluaran Latent Semantic Analysis. SOM dipilih untuk melakukan klasifikasi karena algoritma ini tidap perlu melakukan supervisi pada proses pembelajarannya sehingga dapat secara otomatis menentukan tingkat plagiarisme antar paragraf yang tidak mudah ditentukan secara langsung oleh manusia. Selain itu dilakukan perbandingan akurasi penentuan tingkat plagiarisme yang dimiliki oleh sistem apabila hanya menggunakan LSA saja, penggunaan LSA dengan SOM, dan penggunaan LSA dengan Learning Vector Quantization LVQ.
Penggunaan SOM dan LVQ dilakukan untuk melakukan klasifikasi tingkat plagiarisme dari hasil keluaran LSA. Penentuan tingkat plagiarisme sudah cukup dilakukan apabila hanya menggunakan LSA saja, dimana sudah dapat menghasilkan tingkat akurasi paling tinggi yaitu 86,24. Namun, penggunaan SOM dengan jumlah kelas sebanyak 2 dengan 3 parameter memberikan rata-rata tingkat akurasi yang sedikit lebih rendah, yaitu sebesar 82,00. Sedangkan penggunaan LVQ dengan jumlah kelas sebanyak 2 dengan 3 parameter juga memberikan rata-rata tingkat akurasi yang sedikit lebih tinggi dibandingkan, yaitu sebesar 82,10.

This research has concern on deployment of neural network algorithm Self Organizing Map SOM in automatic plagiarism detector so it could be used to classify the output from Latent Semantic Analysis. SOM is chosen because it is an unsupervised neural network algorithm. With unsupervised neural network, it could determine the plagiarism level between paragraf automatically, which hard for human to determine it. Other than deployment of SOM, this research also focusses on the comparison of accuracy of the system if the system only deploys pure LSA, combination of LSA and SOM, and combination of LSA and Learning Vector Quantization LVQ.
SOM and LVQ are used to do classification for the output from LSA. Plagiarism level could be determined by the result of LSA only. It has 86,24 as the highest accuracy level. But, the usage of SOM with 2 classes and 3 parameters gives lower average of accuracy, which is 82,00 . Therefore, usage of LVQ with 2 classes and 3 parameters gives slight better accuracy than SOM, which is 82,10.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
Spdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>