Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 65031 dokumen yang sesuai dengan query
cover
"Tekstur menyimpan atau menyediakan karakteristik-karakteristik yang penting untuk usaha pengidentifikasian permukaan dan objek pads berbagai macam citra. Untuk mempelajari tekstur tersebut, dir a sebagian besar tekstur alami mempunyai frekuensi dominan yang terletak pada saluran frekuensi menengah, diperlukan metode multisaluran atau analisa multiresolusi, untuk mencapai frekuensi tertentu. Wavelet adalah sebuah fungsi matematika yang memotong-motong data ke dalam frekuensi-frekuensi yang berbeda-beds, sehingga data tersebut dapat dipelajari dengan resolusi yang berbeda-beds. Sebuah metode transformasi wavelet yang disebut Transformasi Wavelet Berstniktur Pohon (Tree Structured Wavelet Transform) memungkinkan untuk memilih daerah frekuensi yang akan dipelajari. Segmentasi citra merupakan suatu masalah yang sangat penting dalam analisa citra Ada berme.cam-macam kriteria, seperti rata-rata tingkat keabuan (mean gray level), warns (color) dari citra yang dapat disegmentasilan Dengan melakukan segmentasi pads suatu citra, stivktur dan informasi yang tersimpan pada citra dapat dianalisa dan dipelajari lebih lanjut. Skripsi ini bertujuan untuk membuat perangkat lunak yang dapat mensegmentas&m teks-s-tur pada suatu citra dengan dengan menggunakan Transformasi Wavelet Berstruktur Pohon dap- algoritma pengkelasan fuzzy c-means (fuzzy c-means clustering algorithm). Hasil uji coba menunjukkan bahwa citra tekstur berukuran 256 x 256 piksel yang dicoba untuk disegmentasikan dapat dzbedakan teksturnya dengan baik oleh program."
Fakultas Teknik Universitas Indonesia, 1997
S39420
UI - Skripsi Membership  Universitas Indonesia Library
cover
Radite Bryllianto
"Tekstur menyimpan atau menyediakan karakteristik-karakteristik yang penting untuk usaha pengidentifikasian permukaan dan objek pads berbagai macam citra. Untuk mempelajari tekstur tersebut, dimana sebagian besar tekstur alami mempunyai frekuensi dominan yang terletak pada saluran frekuensi menengah, diperlukan metode multisaluran frekuensi atau analisa multiresolusi, untuk mencapai frekuensi tertentu.
Wavelet adalah sebuah fungsi matematika yang memotong-motong data ke dalam frekuensi-frekuensi yang berbeda, sehingga data tersebut dapat dipelajari dengan resolusi yang berbeda-beds. Sebuah metode transformasi wavelet yang disebut Transformasi Wavelet Berstruktur Pohon (Tree Structured Wavelet Transform) memungkinkan untuk memilih daerah frekuensi yang akan dipelajari.
Skripsi ini bertujuan untuk membuat perangkat iunak yang dapat mengenali tekstur pads suatu citra secara tepat dengan menggunakan Transformasi Wavelet Berstruktur Pohon. Hasil uji cobs menunjukkan bahwa citra teskstur berukuran 128 x 128 piksel yang dicoba untuk diketahui teksturnya, dapat dikenali dengan balk oleh program."
Depok: Fakultas Teknik Universitas Indonesia, 1997
S39493
UI - Skripsi Membership  Universitas Indonesia Library
cover
Charista Christie Tjokrowidjaja
"Segmentasi merupakan sebuah proses yang penting dilakukan dalam menganalisa suatu citra. Dengan melakukan segmentasi, maka citra tersebut dapat dibagi menjadi beberapa bagian yang lebih sederhana yaitu bagian-bagian yang memiliki karakteristik visual yang serupa seperti warna, gerakan, dan tekstur. Fuzzy c-means (FCM) yang diperkenalkan oleh Dunn dan dikembangkan oleh Jim Bezdek, adalah algoritma yang populer digunakan dalam segmentasi citra karena algoritma ini mudah digunakan dan akurat. Lebih tepatnya, FCM sangatlah efektif digunakan untuk mensegmentasi citra yang tidak memiliki noise. Selain sensitif terhadap noise, FCM juga sensitif terhadap outliers. Berbagai macam metode telah ditemukan untuk mengatasi kelemahan dari algoritma FCM, salah satunya menggunakan metode robust FCM (RFCM). Dari hasil penelitian yang dilakukan, dapat dilihat hasil secara kuantitatifnya lebih baik dibandingkan dengan algoritma-algoritma FCM lain. Hasil percobaan menunjukkan modifikasi RFCM memberikan hasil yang lebih baik terutama untuk data iris.

Segmentation is an important process to analyze an image. With image segmentation, an image can be partitioned into several simpler parts, which is parts that have similar visual characteristics like colors, motions, and textures. Fuzzy c-means (FCM) is introduced by Dunn and developed by Jim Bezdek. FCM is a popular algorithm to be used on image segmentation because of its simplicity and accuracy. Moreover, FCM is highly effective to segment image that have no noise. Aside its sensitiveness to noise, FCM is also sensitive to outliers. Several methods are founded to overcome FCM’s weaknesses one of which is using robust FCM method. From research, quantitatively it’s result is better compared to other FCM algorithms. Reseach done shows that modified RFCM gives better result especially for iris data.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S57576
UI - Skripsi Membership  Universitas Indonesia Library
cover
St. Nawal Jaya
"ABSTRAK
Penelitian ini bertujuan untuk meningkatkan kualitas citra USG 2D dan evaluasi
parameter untuk phantom polyurethane sebagai test unjuk kerja dan akurasi USG
2D. Untuk mencapai tujuan tersebut maka dilakukan tahap pre-processing,
intermediate-processing, dan post-processing menggunakan software Matlab
secara offline. Pre-processing terdiri dari cropping dan filtering, intermediateprocessing
berupa segmentasi menggunakan algoritma FCM, dan post-processing
mengevaluasi parameter-parameter dari citra phantom polyurethane. Hasil dari
pre-processing yaitu dimensi citra menjadi kecil, resolusi turun, dan citra menjadi
blur. Algoritma FCM yang diimplementasikan mempartisi objek citra ke dalam
empat cluster berdasarkan similaritas derajat keabuannya. Tahap terakhir,
menampilkan jarak, diameter, dan titik konsentrasi objek pada parameter tertentu
dari citra. Segmentasi merupakan inti dari peningkatan kualitas citra yang mana
algoritma FCM menghasilkan citra yang tersegmentasi secara tepat namun
evaluasi beberapa parameter masih kurang signifikan (lihat Tabel 4.1).

ABSTRACT
The research aim to upgrade image quality of USG 2D and to evaluate parameter
for polyurethane phantom as performance test and accuracy of USG 2D. The
goals could be reached via pre-processing, intermediate-processing, and postprocessing
step using Matlab software in offline. Pre-processing consist of
cropping and filtering process. Intermediate-processing is segmentation that using
Fuzzy C-Means (FCM) algorithm and post-processing evaluated parameter of
polyurethane phantom image. Result of pre-processing is polyurethane phantom
image with small dimension, low resolution, and blur. FCM algorithm was
implementation make partition image object into four cluster based on similarity
its gray scale. The last step display distance, diameter, and concentration dot of
object in particular parameter of image. Segmentation is main step of
enhancement of image quality which FCM algorithm that produced image
segmentation accurately however evaluation of any parameter did not still quite
significant (look at Table 4.1)."
2013
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ahmad Afif Fauzan
"Magnetic Resonance spectroscopy (MRS) adalah suatu modalitas dari pemeriksaan MRI. MRS digunakan untuk mengetahui kandungan metabolit pada pasien penderita glioma otak Astrocytoma atau infeksi otak. Hasil analisa pada MRS tidak bisa dijadikan sebuah acuan untuk menentukan seorang pasien menderita glioma otak atau infeksi otak. Dalam tugas akhir ini akan dibahas proses klasifikasi terhadap data MRS untuk menentukan penyakit yang diderita oleh seorang pasien. Tujuan akhir dari penulisan akhir ini adalah mentukan keakuratan klasifikasi data MRS dengan menggunakan metode Modified Fuzzy C-Means. Modified Fuzzy C-Means adalah pengembangan dari metode Fuzzy C-Means. Sama seperti metode Fuzzy C-Means, metode Modified Fuzzy C-Means merupakan metode yang mengalokasikan data dengan menggunakan fungsi membership (keanggotaan). Fungsi membership ini digunakan untuk menentukan seberapa besar kemungkinan sebuah data dapat menjadi anggota kedalam sebuah cluster, dengan menggunakan pembobotan pada setiap pusat cluster-nya. Keakuratan klasifikasi sangat bergantung kepada parameter-parameter yang terdapat pada algoritma Modified Fuzzy C-Means.

Magnetic resonance spectroscopy (MRS) is a modality of MRI examination. MRS is used to determine the content of metabolites in patients with Astrocytoma brain glioma or brain infection. An analysis of the MRS could not be used as a reference for determining a patient suffering from a brain glioma or brain infection. In this project will discuss the process of classification of the data MRS to determine the diseases suffered by a patient. The ultimate purpose of writing this final project MRS data classification accuracy by using Modified Fuzzy C-Means. Modified Fuzzy C-Means is the development of methods of Fuzzy C-Means. Just like Fuzzy C-Means method, the method Modified Fuzzy C-Means is a method that allocates data by using the membership function (membership). This membership function is used to determine how likely a member of the data can be added to a cluster, using a weighting on each of its cluster center. Classification accuracy is very dependent on the parameters contained in the Modified algorithm Fuzzy C-Means.
"
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
S59393
UI - Skripsi Membership  Universitas Indonesia Library
cover
Budyono Saputro
"ABSTRAK
Pengenalan pembicara telah digunakan secara luas dalam kehidupan sehari-hari yang telah menjadi cabang penting dari otentifikasi secara otomatisuntuk identitas pembicara. Ekstraksi fitur suara adalah salah satu masalah yang penting dalam pengenalan pembicara dan merepresentasikan suara. Mel-frequency cepstrum coefficients (MFCC) adalah salah satu fitur penting suara dalam proses pengenalan pembicara. Hasil dari ekstraksi fitur ini selanjutnya akan diklasifikasikan untuk melakukan proses pengenalan pembicara. Dalam skripsi ini akan digunakan Perceptron dan Fuzzy C-Means sebagai metode klasifikasi untuk proses pengenalan pembicara. Tingkat akurasi yang diperoleh dari kedua metode ini menghasilkan 90.00% dengan menggunakan Perceptron dan 72.50% dengan menggunakan Fuzzy C-Means untuk masalah identifikasi pembicara texr-independent."
Universitas Indonesia, 2011
S823
UI - Skripsi Open  Universitas Indonesia Library
cover
Ralind Remarla
"Dalam penelitian Computer Aided Diagnose (CAD) Radiografi Paru pasien dewasa dengan metode Fuzzy C Means (FCM), telah dilakukan dalam keadaan tahap awal. Penelitian ini bertujuan untuk mengetahui apakah metode clustering FCM dapat digunakan untuk membuat perangkat penolong untuk melihat abnormalitas pada paru-paru dari 200 data citra Radiografi sinar-X. Pembuatan perangkat dilakukan dengan menggunakan GUI pada Matlab.
Perancangan di bagi menjadi dua metode menggunakan metode FCM otomatis dan manual kemudian untuk mengetahui perbedaan nilai piksel digunakan metode ambang rata-rata. Kedua metode ini berdasarkan intensitas derajat keabuan 0-256. Metode FCM digunakan untuk melihat visualisasi abnormalitas secara cepat dan mengetahui garis besar posisi yang abnormal. Kemudian diteruskan dengan segmen kotak dari metode ambang rata-rata untuk mengetahui perbedaan nilai pixel citra abnormalitas dan yang normal.
Hasil penelitian nenujukkan bahwa, Kinerja Metode FCM Akurasi 57,7%, sensitifitas 50,0%, spesifikasi 89,5% , Overal Error 42,3% dan Presisi 95,1%. Sedangkan metode Segmen per kotak Akurasi 56,7%, sensitifitas 51,7%, spesifikasi 88,5% , Overal Error 43,3% dan Presisi 96,7%. berdasarkan penelitian dapat disimpulkan bahwa Metode FCM dalam paru hanya bisa menunjukkan visual secara cepat dan garis besar namun tidak memberikan akurasi yang cukup memuaskan, hal ini di karenakan data input yang random tidak dapat dijadikan patokan untuk ukuran keberhasilan.

In the study Computer Aided Diagnose (CAD) Lung Radiography adult patients with Fuzzy C Means (FCM), has been carried out in a state of infancy. This study aims to determine whether the FCM clustering method can be used to make the device helper to see abnormalities in the lungs of 200 image data of X-ray radiography. Making the device is done by using the GUI in Matlab.
The design is divided into two methods using automated and manual methods FCM then to determine differences in pixel value threshold method is used on average. Both methods are based on the intensity of gray 0-256 degrees. FCM method is used for visualizing abnormalities quickly see and know the outline of an abnormal position. Then forwarded to the segment boxes of the average threshold method to determine differences in pixel values abnormalities and normal image.
That research results, performance FCM method Accuracy 57.7%, 50.0% sensitivity, 89.5% specification, Overal Error 42.3% and 95.1% precision. While the method of segment per box Accuracy 56.7%, 51.7% sensitivity, 88.5% specification, Overal Error 43.3% and 96.7% precision. based study concluded that the method of FCM in the lungs can only show rapid visual and outline but does not give a satisfactory accuracy, it is in because random input data can not be used as a benchmark to measure success.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
T43858
UI - Tesis Membership  Universitas Indonesia Library
cover
Rezki Aulia Putri
"Sinusitis adalah peradangan pada dinding sinus, yaitu rongga kecil yang terhubung dengan rongga udara dalam tulang tengkorak. Sinus terletak di belakang dahi, di dalam struktur tulang pipi, di kedua sisi hidung, dan di belakang mata. Sinusitis disebabkan oleh peradangan pada rongga hidung, tumbuhnya polip, alergi, dan hal lainnya yang dapat terjadi pada orang dewasa, remaja, bahkan anak-anak. Untuk mengklasifikasi jenis sinusitis, penulis menggunakan Fuzzy C-Means Berbasis Kernel yang merupakan pengembangan dari Fuzzy C-Means. Fuzzy C-Means mengelompokkan data menggunakan jarak Euclidean. Namun, jika data yang akan dipisahkan adalah data non linear, maka konvergensinya akan kecil dan membutuhkan waktu yang lama. Untuk menyelesaikan masalah ini dapat digunakan Fuzzy C-Means Berbasis Kernel yang menggunakan fungsi kernel untuk menggantikan jarak Euclidean. Metode ini memetakan objek dari ruang data ke ruang fitur yang berdimensi lebih tinggi, sehingga dapat mengatasi kelemahan FCM. Data yang digunakan adalah data penyakit sinusitis yang diperoleh dari laboratorium radiolog RSUPN Cipto Mangunkusumo, Jakarta. Karena data yang digunakan adalah data non linear, maka metode yang lebih cocok digunakan adalah Fuzzy C-Means Berbasis Kernel. Dengan menggunakan software Matlab diperoleh akurasi 100% dengan waktu mendekati 0 detik untuk Fuzzy C-Means Berbasis Kernel.

Sinusitis is an inflammation of the sinus wall, a small cavity interconnected through the airways in the skull bones. It is located on the back of the forehead, inside the cheek bone structure, on both side of the nose, and behind the eyes. Sinusitis is caused by infection, growth of nasal polips, allergies, and others. This condition can effect adults, teenagers, and even children. To classify sinusitis we used Kernel Based Fuzzy C-Means, which is the development of Fuzzy C-Means (FCM). FCM algorithm groups data using Euclidean distance. However, when non linear data is separated, the convergence is innacurate and need a long running time. To overcome this problem, a Kernel Based Fuzzy C-Means that use kernel functions as a substitute for Euclidean distance. It maps objects from data space to a higher dimention feature space, so they can overcome FCM deficiencies. Data that is used is sinusitis dataset obtained from the laboratory of radiology at Cipto Mangunkusumo National General Hospital, Jakarta. Because the data used is non-linear dataset, the more suitable method is Kernel Based Fuzzy C-Means. By using the Matlab software 100% accuracy is obtained and running time is close to 0 for Kernel Based Fuzzy C-Means.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Triyana Muliawati
"ABSTRAK
Seiring perkembangan teknologi informasi dan komunikasi, pemenuhan
kebutuhan informasi dapat diperoleh melalui media sosial, seperti Twitter.
Banyaknya pengguna internet telah memicu aliran data yang sangat besar dan
cepat, sehingga membuat analisis secara manual sulit atau bahkan tidak mungkin
dilakukan. Metode otomatis diperlukan untuk menganalisis data tersebut yang
salah satunya yaitu dengan topic detection and tracking (TDT). Suatu metode
alternatif laindari TDT untuk masalah pendeteksian topik selain latent dirichlet
allocation (LDA) adalah fuzzy clustering dengan menggunakan algoritma fuzzy Cmeans
(FCM). FCM pada pendeteksian topik dapat memenuhi asumsi bahwa
suatu dokumen pada Twitter dapat terdiri dari beberapa topik. FCM bekerja cukup
baik di dimensi data yang rendah, akan tetapi gagal dalam dimensi data yang
tinggi. Oleh karena itu, dibutuhkan suatu metode untuk mereduksi dimensi ruang
eigen yang tinggi ke dimensi yang lebih rendah. Salah satu metodenya adalah
singular value decomposition (SVD) dengan menggunakan truncated SVD. Pada
penelitian ini, dilakukan prosestruncated SVD kemudian FCM yang
dinamakanfuzzy C-means pada ruang eigen (Eigen FCM). Hasil akurasi dari
metode ini menunjukkan peningkatan lebih baik dibandingkan FCM dan LDA
pada pendeteksian topik.

ABSTRACT
As the information and communication technology developed, the fulfillment of
information can be obtained through social media, like Twitter. The enormous
number of internet users has triggeredfast and large data flow, thus making the
analysis manually is difficult, or even impossible. The automated methods for
data analysis is needed now, one of which is the topic detection and tracking
(TDT). An alternative method other than TDT fortopic detection problemother
than latent dirichlet allocation (LDA) is a fuzzy clustering algorithms using fuzzy
C-means (FCM). FCM in topic detection meet the assumption that a document on
Twitter can consists of several topics. FCM works pretty well in low-dimensional
data, but fail in high-dimensional data. Therefore, we need a method to reduce the
dimension of the high-dimensional eigenspaceinto lower dimension. One method
to do that is the singular value decomposition (SVD) using truncated SVD. This
papercarried out the truncated SVD process then FCM called fuzzy C-means on
the eigenspace (Eigen FCM). The results of the accuracy of this method shows an
increase is better than FCM and LDA on topic detection."
2016
T45625
UI - Tesis Membership  Universitas Indonesia Library
cover
Richard Lokasasmita
"Kanker servik yang juga dikenal dengan istilah kanker leher rahim merupakan salah satu dari jenis kanker yang paling umum diderita oleh wanita. Kanker ini dapat disembuhkan apabila kanker ini terdeteksi pada stadium awal dan diberikan perawatan yang sesuai. Salah satu cara untuk mencegah kanker servik agar tidak memasuki stadium lebih lanjut adalah dengan melakukan Pap Smear Test. Namun untuk melakukan Pap Smear Test diperlukan tingkat akurasi yang sangat tinggi, sehingga diperlukan tenaga ahli patologi untuk melakukannya.
Penelitian ini dilakukan dengan harapan dan tujuan untuk mengembangkan metode segmentasi secara otomatis yang memberikan hasil segmentasi dengan cukup baik. Metode segmentasi yang digunakan dalam penelitian ini adalah fuzzy c-means clustering. Proses pengenalan sel kanker yang dilakukan melalui beberapa tahapan proses yakni, penyeragaman intensitas keabuan, ekstraksi ciri, segmentasi daerah sel, deteksi sel tunggal, dan diakhiri dengan pengenalan kategori normal atau abnormal dari sel tersebut.
Penelitian demi penelitian telah dilakukan untuk mendapatkan metode segmentasi yang optimal untuk melakukan pendeteksian sel kanker. Penelitian Titin Farida merupakan salah satu penelitian yang menerapkan metode segmentasi fuzzy cmeans clustering. Namun pada penelitian Titin Farida metode segmentasi yang digunakan masih bersifat semi-otomatis. Hal ini menyulitkan pengguna, karena pengguna harus menentukan parameter yang sesuai dengan karakteristik sel. Penelitian ini hendak melakukan modifikasi terhadap metode segmentasi ini agar dapat bekerja secara otomatis dan relatif lebih optimal."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2007
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>