Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 77344 dokumen yang sesuai dengan query
cover
Amirullah
Depok: Fakultas Teknik Universitas Indonesia, 1995
S38408
UI - Skripsi Membership  Universitas Indonesia Library
cover
Groot, William van der
Bandung: M2S, 1984
621.384 135 GRO at
Buku Teks  Universitas Indonesia Library
cover
Indra Surjati
"Frekuensi ganda antena mikrostrip merupakan suatu jenis dari antena mikrostrip yang dapat bekerja pada dua buah frekuensi yang berbeda satu dengan yang lainnya tanpa memerlukan dua buah antena yang berbeda secara fisik. Dan hasil penelitian yang telah dilakukan, telah dilakukan modifikasi terhadap struktur dari reactively loaded patch antenna untuk bentuk segitiga sama sisi dengan menggunakan pencatuan secara langsung atau probe feed.
Pada penelitian ini dilakukan suatu perancangan dan pembuatan antena mikrostrip segitiga sama sisi menggunakan sepasang slit dengan lebar slit 1 mm baik menggunakan saluran mikrostrip maupun saluran coplanar waveguide. Daiam perancangan ini lebar slit dibuat tetap sebesar 1 mm sedangkan tinggi slit dapat diubah-ubah dari 10 mm sampai 14 mm dan jarak antara slit dapat diatur, mula-mula 3 mm kemudian 5 mm dan selanjutnya menjadi 7 mm. Dalam penelitian ini dibahas pengaruh perubahan tinggi slit dan jarak antara slit terhadap dua buah frekuensi resonansi yang keluar karena penambahan sepasang slit tersebut.
Frekuensi ganda dapat dibangkitkan dengan menambahkan sepasang slit pada alas dari segitiga sama sisi yang saling paralel satu dengan lainnya dengan lebar slit 1 mm menggunakan teknik pengkopelan secara elektromagnetik. Penambahan beban sepasang slit menggeser frekuensi resonansi kedua (fr2 ) dan dibutuhkan tinggi slit serta jarak antara slit tertentu untuk dapat menghasilkan frekuensi resonansi pertamanya (fr1).
Untuk saluran mikrostrip, bandwidth yang dihasilkan dapat diperlebar sampai 5,39% dengan rasio frekuensinya berkisar antara 1,08 sampai 1,52. Sedangkan untuk saluran coplanar waveguide, bandwidth dapat diperlebar sampai 2,90% dengan rasio frekuensinya berada pada kisaran 1,29 sampai 1,31."
Depok: Fakultas Teknik Universitas Indonesia, 2004
D556
UI - Disertasi Membership  Universitas Indonesia Library
cover
Harahap, Emir Soaduon
"Pada penelitian ini dilakukan perancangan antena yang beresonansi pada frekuensi 1.8 GHz dan 2.1 GHz. Pemilihan frekuensi ini disesuaikan terhadap IMT 2000. Penggunaan geometri antena berbentuk segitiga sama sisi dimaksudkan untuk memperkecil dimensi antena secara keseluruhan. Secara geometris antena ini berbentuk dua segitiga sama sisi yang saling membelakangi, satu segitiga sebagai radiator dan segitiga yang lain sebagai parasitiknya. Gangguan yang dilakukan oleh elemen parasitik terhadap elemen peradiasi dengan menggandeng keduanya dengan jarak tertentu, memunculkan frekuensi resonan baru yang berdekatan dengan frekuensi resonan utama yang dibangkitkan oleh elemen peradiasi. Perbandingan antara frekuensi alas terhadap bawahnya sebesar 1.1. Resonan pertama dibangkitkan oleh elemen peradiasi sedangkan resonan kedua berasal dari elemen parasitik.
Metode Hubung singkat yang terhubung antara patch dengan ground plane pada satu titik di antara voltage null dengan puncak segitiga sama sisi, menghasilkan dimensi antena yang berukuran 113 bagian dari sebenarnya. Celah, di antara dua elemen yang saling membelakangi, akan berpengaruh pada frekuensi rasio antara kedua resonan tersebut maupun perolehan nilai return loss yang berkaitan dengan nilai VSWR di bawah 1.2.
Cara yang digunakan untuk memperoleh perbandingan elemen radiator dan parasitiknya adalah dengan menguji coba 5 buah antena dengan 5 perbedaan pada elemen parasitiknya. Untuk mengetahui jarak celah yang tepat adalah dengan menguji coba 5 buah antena yang identik namun memiliki 5 perbedaan celah yang menggandeng elemen radiator dengan parasitiknya.
Hasil pengukuran return loss yang diperoleh dari segitiga dengan panjang sisi elemen peradiasi 2 cm dan panjang sisi parasitik 1.6 cm adalah -21.24 dB untuk frekuensi 1.86 GHz dan -25.37 dB untuk frekuensi 2.15 GHz. Nilai VSWR-nya berturut-turut 1.19 dan 1.12. Bandwidth pada kedua resonan adalah 37.21 MHz.

The research had been done to design antenna which are resonant at L8 GHz and 2.1 GHz. The frequencies are adjusted to IMT 2000. Geometrical dimension such as equilitriangular is used to shrink the original patch. The antenna is consisted of two element, one element as radiator and the other as parasitic. The disturbance done by parasitic element generates new resonant which is closed to the main resonant. Division between second and first resonant is 1.1. The first resonant is generated by radiator and second resonant is generated by parasitic element.
Short circuit connected from patch to ground plane in one spot between voltage null and equilitriangular tip, can shrink the dimension to become 113 part of original dimension. Gap, between two element can affect to frequency ratio and return loss values connected to VSWR values beneath 1.2.
The way to reach appropriate composition between radiator and parasitic element through experiment on 5 samples that have 5 different parasitic dimensions. The way to reach appropriate gap between radiator and parasitic element through on 5 samples that have 5 different gaps.
With 2 cm radiator equilitriangular length and 1.6 cm parasitic equilitriangular length brings return loss results -21.24 dB at L86 GHz and -25.37 dB at 2.15 GHz, respectively. VSWR values are 3.19 and 1.12 respectively. Bandwidth on both resonant is 37.21 MHz.
"
Depok: Fakultas Teknik Universitas Indonesia, 2002
T2786
UI - Tesis Membership  Universitas Indonesia Library
cover
Iskandar Fitri
"Pada penelitian ini dilakukan rancang bangun antena untuk meningkatkan bandwidht yaitu antena proximity-coupling yang terdiri dari dua lapis substrate yang mana lapis pertama berfungsi sebagai elemen radiator dan lapis bawah digunakan untuk saluran pencatu mikrostrip berbentuk seperti garpu, sehingga dapat memberikan efek kopling sangat kuat. Antena tersebut merupakan sebuah antena pengirim maupun penerima yang bekerja pada frekuensi 5.2 GHz. Metode model cavity digunakan untuk menganalisis perhitungan parameter-parameter antenna.
Dengan membuat catu saluran mikrostrip dua stub dapat memberikan efek kopling dua kali lebih besar dibandingkan saluran catu tunggal yang disisipkan dibawah parch. Hal ini dijelaskan dengan men-tuning ruang antara dua cabang stub garpu, locus impedansi membentuk resonansi ditengah diagram smith chart. Kedua dengan men-tuning panjang kedua cabang, bagian imajiner impedansi masukan dapat dikompensasi, yang memberikan penyesuaian impedansi dengan bandwidth yang lebar. Ketiga, jarak antara stub dan pinggir patch untuk membuat bagian impedansi antena sama dengan karakteristik impedansi saluran mikrostrip.
Rancang bangun antenna menggunakan perangkat lunak microwave office 5.0 untuk menghitung parameter-parameter antena dan PCAAD 3.0 untuk menghitung ukuran parzh dan lebar saluran mikrostrip. Hasil simulasi dibandingkan dengan pengrikuran, dimana pola radiasi dan gain menggunakan antena identik.
Dari hasil pengukuran didapat bandwidth sebesar 0.98 GHz pada frekuensi kerja 5.2 GHz (VSWR = 1.027). Sehingga dengan menggunakan sisipan saluran catu berbentuk garpu akan memberikan efek kopling dua kali lebih besar yang pada akhirnya meningkatkan bandwidth dua kali lebih besar, dibandingkan dengan sisipan saluran tunggal.

The thesis present design of an antenna for increasing bandwidth that is the proximity coupling antenna which two layer substrate where the first layer used as radiator element and second layer used to microstripline with fork-like tuning stub, that it provide strong coupling effect. The antenna use for receiver and transmitter at 5.2 GHz. The method of cavity model used to analyze parameters of antenna.
By making two tuning stub of microstripline fed can improvement double coupling effect then compared with single microstripline inset under the patch. It is explained that by tuning the spacing between the two branch sections of the fork-like tuning sub, the impedance locus can form a tight resonant loop around center of the smith chart. Second by tuning the lengths of the two branch sections, the imaginary part of the input impedance can be compensated, which leads to good impedance matching over a wide bandwidth. Third, distance between stub and edge of the patch controlled for make the real part of impedance antenna same as characteristic impedance of microstripline.
The design antenna used two software programs that are microwave office 5.0 for account antenna parameters and PCAAD 3.0 for account geometries patch and microstripline width. The simulation results compared with measurement, where radiation pattern and gain using identical antenna.
From measurement resulted bandwidth 0.98 GHz at frequency operation 5.2 GHz (VSWR = 1.027). By using microstripline with fork-like tuning stub and add the short a tuning stub is connected in shunt with the feed line increasing twice wider bandwidth compared with single microstripline feed.
"
Depok: Fakultas Teknik Universitas Indonesia, 2003
T14679
UI - Tesis Membership  Universitas Indonesia Library
cover
Iman Sudjudi
Depok: Fakultas Teknik Universitas Indonesia, 1994
S38630
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tb. Tidra Barezna Imanu
"Skripsi ini membahas rancang bangun antena reconfigurable untuk aplikasi cognitive radio pada alokasi spektrum 1,8 GHz, 2,1 GHz uplink, 2,1 GHz downlink, dan 2,35 GHz. Rancang bangun antena terdiri dari dua antena yaitu antena sensing dan antena communicating yang digabungkan dalam satu divais. Antena sensing memiliki karakteristik ultrawideband dari 1,65 GHz - 3,75 GHz (bandwidth = 2,1 GHz) dan antena communicating memiliki karakteristik narrowband pada frekuensi 1.8 GHz, 2.1 GHz uplink, 2.1 GHz downlink, dan 2.35 GHz. Hasil validasi dengan pengukuran diperoleh hasil yang sesuai dengan rancangan simulasi, terutama meliputi parameter return loss, pola radiasi, dan gain.

This bachelor thesis discusses a design and fabrication of reconfigurable antenna for cognitive radio applications, especially for allocation of spectrum 1.8 GHz, 2.1 GHz Uplink, 2.1 GHz Downlink, and 2.35 GHz. The antenna design consists of two antennas which sensing antenna and communicating antenna. The sensing antenna has ultrawideband characteristics from 1.65 GHz - 3.75 GHz (the bandwidth about 2.1 GHz) and the communicating antenna has narrowband characteristics at the center frequency 1.8 GHz, 2.1 GHz uplink, 2.1 GHz downlink, and 2.35 GHz. The validation has been conducted by the measurement, where it agrees with the simulation result, in particular for the parameter of return loss, radiation pattern and gain of the antenna."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S44147
UI - Skripsi Membership  Universitas Indonesia Library
cover
Efri Sandi
"ABSTRAK
Konfigurasi sparse array antena merupakan suatu konfigurasi elemen antena yang dijarangkan satu sama lainnya untuk mengurangi jumlah elemen pada suatu dimensi antena array dengan tetap mempertahankan performansi radiasi antena. Karakteristik antena array klasik mengisyaratkan jarak antar elemen adalah setengah panjang gelombang ?/2 sampai dengan maksimum satu kali panjang gelombang ? untuk mendapatkan performansi radiasi yang ideal, sehingga merancang konfigurasi sparse dengan jarak antar elemen melebihi panjang gelombang merupakan suatu tantangan dalam pengembangan konfigurasi antena array. Konfigurasi sparse array dibutuhkan untuk disain antena pada berbagai sistem komunikasi seperti Radar, sistem navigasi, komunikasi satelit dan radio astronomi yang membutuhkan jumlah elemen antena yang sangat banyak, sehingga pengurangan jumlah elemen yang signifikan dapat meningkatkan efisiensi biaya pengembangan sistem tersebut.Disain antena sparse array saat ini telah dikembangkan dalam beberapa penelitian dengan berbagai metode, seperti metode diterministik dan algoritma genetik, metode stokastik, metode faktorisasi, metode kombinatorial dan pemanfaatan efek mutual coupling. Dari berbagai metode yang telah berkembang tersebut, masih terdapat beberapa tantangan dan kebutuhan aplikasi untuk diselesaikan dan dicarikan solusi yang lebih baik, seperti tingginya degradasi performansi radiasi, tingkat efisiensi elemen dan proses disain yang relatif kompleks. Untuk itu dalam disertasi ini dikembangkan dan diusulkan beberapa gagasan dan hasil riset tentang metode disain antena sparse array untuk meningkatkan performansi radiasi dan efisiensi jumlah elemen. Metode yang dikembangkan adalah metode non-uniform stretching-cyclic different sets CDS , metode hybrid, metode stretching berdasarkan polinomial Chebyshev dan metode koefisien jarak menggunakan distribusi line-source Taylor.Metode non-uniform stretching-CDS merupakan metode disain sparse array yang dikembangkan dari metode disain sparse array CDS melalui suatu pendekatan formulasi non-uniform stretching sehingga dapat meningkatkan performansi Gain dan Beamwidth dengan pengurangan jumlah elemen yang signifikan.Metode hybrid merupakan metode disain sparse array yang dikembangkan melalui modifikasi prosedur disain CDS dan teknik eksitasi amplitudo menggunakan deret binomial sehingga dihasilkan perbaikan performansi SLL dibandingkan dengan metode disain CDS.Metode stretching berdasarkan polinomial Chebyshev merupakan pengembangan metode diterministik disain sparse array dengan proses komputasi sederhana untuk menentukan jarak antar elemen berdasarkan polinomial Chebyshev sehingga pengurangan jumlah elemen dapat tetap mempertahankan performansi radiasi.Metode koefisien jarak menggunakan distribusi line-source Taylor merupakan pengembangan metode diterministik disain sparse array untuk menentukan koefisien jarak antar elemen berdasarkan distibusi line sourse Taylor sehingga dihasilkan perbaikan performansi radiasi jika dibandingkan metode CDS dan proses komputasi yang lebih sederhana dibandingkan metode diterministik yang sudah ada.Hasil-hasil simulasi dan pengujian metode disain antena sparse array yang diajukan dalam disertasi ini memiliki keunggulan masing-masing dan dapat digunakan sesuai target dan prioritas disain antena sparse array. Metode stretching-CDS memiliki keunggulan dari sisi efisiensi elemen, performansi Gain dan Beamwidth. Metode hybrid memiliki kelebihan dari sisi efisiensi elemen dan performansi SLL. Sedangkan metode berbasis polynomial baik Chebyshev dan Taylor memiliki keunggulan performansi radiasi yang lebih baik dibandingkan metode berbasis kombinatorial CDS.

ABSTRACT
The sparse array antenna configuration is sparsely configuration of antenna elements to reduce the number of elements in an array antenna dimension while maintaining the antenna radiation performance. The classical antenna array characteristic implies the distance between elements is half wavelength 2 to a maximum of a wavelength to obtain the ideal radiation performance. Therefore, design of sparse configurations with distances between elements beyond the wavelength is a challenge in development Array antenna configuration. The sparse array configurations are required for antenna design on various communications systems such as Radar, navigation systems, satellite communications and radio astronomy that require a massive of antenna elements, resulting in significant reductions in the number of elements that can increase the cost efficiency of developing the system.The design of antenna sparse arrays has been developed in several studies with various methods, such as deterministic methods and genetic algorithms, stochastic methods, factorization methods, combinatorial methods and mutual coupling effect utilization. The various methods that have evolved, there are still some challenges and application needs to be solved and found a better solution, such as the high radiation performance degradation, the level of elements efficiency and the design process is relatively complex. Therefore, in this dissertation, some ideas and research result are developed about sparse array antenna design method to improve radiation performance and elements efficiency. The method developed is non uniform stretching cyclic different sets CDS method, hybrid method, stretching Chebyshev method and distance coefficient method using Taylor 39 s line source distribution.The non uniform stretching method CDS is a sparse array design method developed from the CDS sparse array design method through a non uniform stretching formulation approach that can improve Gain and Beamwidth performance by significantly reducing the number of elements.The hybrid method is a sparse array design method developed through the modification of the CDS design procedure and the amplitude excitation technique using the binomial series to improved SLL performance compared to the CDS design method.The stretching method based on Chebyshev polynomial is the development of the deterministic method with simple computation process to determine the distance between elements based on Chebyshev polynomial to reduce number of elements and maintain the radiation performance.The distance coefficient method using Taylor 39 s line source distribution is the development of the deterministic method to determine the spacing coefficient of elements based on Taylor 39 s line source distribution to improved radiation performance compared to the CDS method and computation process is simpler than the existing deterministic method.The simulation and measurement result of the sparse array antenna design methods presented in this dissertation have their own advantages and can be used according to the target and priority of sparse array antenna design. The stretching CDS method has advantages in terms of element efficiency, Gain and Beamwidth performance. The hybrid method has advantages in terms of element efficiency and SLL performance. The polynomial based methods both Chebyshev and Taylor have better radiation performance advantages over CDS based methods"
2017
D2299
UI - Disertasi Membership  Universitas Indonesia Library
cover
Muhammad Idham Habibie
"Penelitian ini menfokuskan kepada pembuatan reflektor dengan struktur EBG untuk Antena Waveguide 8 slot yang termasuk salah satu aplikasi terhadap radar pengawas pantai. Antena Waveguide 8 slot ini telah diteliti sebelumnya dan telah bekerja pada frekuensi 9.4 GHz, parameter Gain > 15 dB, dan dengan bandwidth 60 MHz. Namun, antena Waveguide 8 slot masih memiliki kekurangan. Kekurangan antena Waveguide 8 slot saat itu masih memiliki backlobe yang cukup besar. Backlobe yang besar ini akan mengurangi kinerja antena Waveguide 8 slot tersebut sebagai radar pengawas pantai karena pada dasarnya radar pengawas pantai memerlukan beamwidth yang kecil.
Penelitian ini dilakukan untuk memperbaiki kinerja antena Waveguide 8 slot dengan cara mendesain reflektor dengan struktur EBG untuk menekan backlobe dari Antena tersebut. Salah satu cara untuk mengurangi backlobe antena tersebut adalah menggunakan Electromagnetic Band Gap (EBG) dalam penelitian ini. Terdapat beragam jenis EBG yaitu High Impedance Surface, Photonic Crystal, Artificial Magnetic Conductor (AMC). Penelitian ini memilih EBG jenis Artificial Magnetic Conductor karena fabrikasinya mudah dan terjangkau. EBG merupakan metamaterial yang dapat menekan gelombang permukaan, mengurangi backlobe maupun sidelobe dari suatu Antena. EBG yang didesain ini harus bekerja pada frekuensi 9.4 GHz agar backlobe Antena dapat berkurang secara signifikan.
Antena Waveguide 8 slot dipasang diatas reflektor EBG tanpa ada material lain yang menghalangi. Pada penelitian ini akan dibandingkan hasil simulasi dan pengukuran antara Antena Waveguide 8 slot tanpa reflektor, Antena Waveguide 8 slot dengan Reflektor konvensional, dan Antena Waveguide 8 slot dengan reflektor EBG untuk menekan Backlobe Antena. Hasilnya adalah Front To Back Ratio untuk Antena Waveguide adalah 21.6 dBi, antena waveguide dengan EBG adalah 54.4 dBi, dan antena waveguide dengan reflektor tembaga adalah 39.35 dBi.

This research focused on designing the reflector with EBG structure for 8 slot waveguide for Coastal Surveillance radar (CSR). The 8 slot waveguide antenna has been studied and works at frequency of 9.4 GHz, with parameter Gain > 15 dB, and the bandwidth of 60 MHz. However, the 8 slot waveguide antenna still has disadvantages. The 8 slot waveguide antenna has a big backlobe. The big backlobe would decrease the 8 slot waveguide antenna performance because the CSR essentially requires small beamwidth.
This Research is focused to improve the performance of the 8 slot waveguide antenna by suppressing backlobe of the antenna. One possible method to reduce backlobe is using a reflector with Electromagnetic Band Gap (EBG) structure for this study. There are various types of EBG such as High Impedance Surface, Photonic Crystal and Artificial Magnetic Conductor (AMC). This study focused on AMC because the EBG type of fabrication is easy and affordable. EBG is a metamaterial that can suppress surface waves, reduce backlobe and sidelobe of the antenna. This EBG reflector is designed to work at frequency 9.4 GHz in order to reduce backlobe antennas significantly.
The 8 slot waveguide antenna is mounted on the EBG reflctor without any other materials blocking. This research will compare the results of simulation and measurements between 8 waveguide slot antenna without a reflector, waveguide antenna 8 slots with conventional copper reflector planar, and 8 waveguide slot antenna with EBG reflector to suppress backlobe antenna. The measurement results show that the Front to back ratio is 21.6 dBi for antenna waveguide, 54.4 dBi for waveguide antenna with EBG and 39.35 dBi for waveguide antenna with reflector copper reflector.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43967
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yonathan Raka Pradana
"Telekomunikasi selalu mengalami perkembangan yang pesat, baik dari sisi teknologi maupun jumlah penggunanya. Namun hal ini juga diikuti dengan permintaan kapasitas yang terus meningkat, sementara spectrum frekuensi yang tersedia juga terbatas. Untuk mengatasi masalah tersebut, smart antenna dengan menggunakan sistem beamforming mulai dikembangkan. Secara mendasar, terdapat dua tipe dari sistem smart antenna, yaitu switched beam dan adaptive array. Sistem switch beam telah banyak dikembangkan karena dalam impelementasinya sederhana dan lebih ekonomis dibandingkan sistem adaptive array. Tidak seperti sistem adaptive array, sistem switch beam hanya terdiri dari beberapa elemen peradiasi, jaringan pembentuk beam, dan RF switch sementara sistem adaptive array membutuhkan operasi dan pemrosesan sinyal yang lebih rumit.
Fokus skripsi ini adalah pada perancangan algoritma untuk sistem pengendali beamforming. Microcontroller diprogram untuk mengendalikan rangkaian switching yang terhubung pada antena susun yang terintegrasi dengan rangkaian butler matriks. Sistem pengendali bekerja dengan melakukan komparasi tegangan analog yang diterima oleh antena terhadap tegangan threshold.
Hasil pemrograman menunjukkan bahwa microcontroller sudah dapat melakukan penghitungan tegangan threshold secara otomatis dan melakukan komparasi nilai input dengan nilai threshold. Hasil keluaran dari microcontroller tersebut berupa nilai digital dengan keluaran sebanyak 4 port sehingga terdapat 15 kombinasi. Hasil algoritma diuji dengan proses integrasi menggunakan antena butler matriks beserta elemen-elemen pendukung ke rangkaian switching.

Telecommunication is always experiencing fast development, both in terms of technology also the number of users. However, it is also followed by increasing of capacity demand, but the available frequency spectrum is also limited. To resolve these problems, a smart antenna that using beamforming system has developed. Smart antenna system has two types, there are switched beam and adaptive array. Beam switch system has been developed because simpler in its implementation and more economical than the adaptive array system. Unlike the adaptive array systems, beam switch system consists of some radiating elements, beamforming network, and RF switches while adaptive array system requires components and signal processing which more complicated.
This research is focusing on the design of algorithms for the beamforming control system. Microcontroller is programmed to control the switching circuit which connected to the antenna array is integrated with the butler matrix circuit. Control systems will compare the analog voltage received by the antenna to the threshold voltage.
The result of programming is shown that the microcontroller is able to calculate the threshold voltage automatically and comparate the input value with the threshold value. The output of the microcontroller is a digital value with 4 ports output so there are 15 combinations. The result of algorithm is tested by integration process using matrix butler antenna and switching circuit supporting elements.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67580
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>