Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 108333 dokumen yang sesuai dengan query
cover
Ariek Bramantyo Putro
"Sidik jari merupakan salah satu bagian tubuh manusia yang unik, artinya mempunyai karakteristik tertentu yang dapat diberdakan. Pengenalan sidik jari (fingerprint recognition) menggunakan pola bukit (ridge) dan lembah (valley) pada sidik jari. Ada 2 struktur sidik jari yang dapat diambil untuk pengenalan, yaitu struktur lokal dan struktur global. Pada pengenalan sidik jari dengan menggunakan struktur global, perlu dicari letak titik referensi yang merupakan titik pusat (core point) dari pola sidik jari. Titik ini akan digunakan sebagai titik referensi untuk tahap pengolahan citra sidik jari berikutnya. Jika sistem melakukan kesalahan pendeteksian titik referensi tersebut, maka sistem pengenalan sidik jari akan gagal melakukan proses pencocokan (matching). Sistem pengenalan sidik jari berdasarkan struktur global menggunakan set filter Gabor untuk mengekstrak sidik jari dengan pola orientasi bukit tertentu. Sistem ini juga dikenal sebagai pengenalan sidik jari berbasiskan Filterbank. Hasil dari pemfilteran dengan filter Gabor dihitung rata-rata deviasi mutlaknya untuk mendapatkan feature yang dijadikan template. Pengujian dilakukan dengan menguji sidik jari yang berasal dari Unibo dan Neurotechnologija. Berdasarkan hasil pengujian, untuk database Unibo diperoleh FMR sebesar 2,143 %, 2,143 % dan 2,857 % serta FNMR sebesar 13,571 %, 11,428 % dan 7,857 %. Untuk database Neurotechnologija diperoleh FMR 0 %, 1,086 % dan 3,260 % serta FNMR sebesar 27,173 %, 16,204 % dan 13,043 %. Masing-masing berurutan untuk threshold sebesar 1000, 1100 dan 1200. Hasil sistem pengenalan sidik jari ini cukup memuaskan untuk dapat diaplikasikan pada sisem pengamanan."
Depok: Fakultas Teknik Universitas Indonesia, 2005
S40224
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Ilmu Komputer Universitas Indonesia, 1991
S26879
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tjong Djuyanta
"ABSTRAK
Dalam bidang kriminal, pengenalan sidik jari membutuhkan banyak waktu dan tenaga, karena itu Lerbagai cara otomatisasi dilakukan untuk mempermudah serta mempercepat proses pengenalan sidik jari tersebut. Salah satu teknik otomatisasi untuk pengenalan sidik jari ini adalah dengan menggunakan komputer dan pemanfaatan aplikasi dad jaringan saraf buatan.
Dalam skripsi ini digunakan proses otomatisasi dengan menggunakan gabungan dari proses-proses pengolahan citra dan jaringan saraf buatan. Citra sidik jari hasil scanning diolah dan diproses sehingga didapatkan ciri-ciri sidik jari bersangkutan, berupa kode arah rata-rata dan jumlah bifurkasi. Ciri-ciri ini kcmudian dimasukkan ke dalam suatu sistem jaringan saraf buatan untuk- proses pelatihan sehingga jaringan saraf tersebut dapat digunakan sebagai standar pembanding untuk proses identifikasi.
Jaringan saraf yang dirancang dan diterapkan dalam skripsi ini adalah salah satu dari topologi jaringan saraf mulliiayer dengan algoritma pelatihan propagasi balik, karena dari hasil yang diperoleh telah menunjukkan proses pengenalan yang cukup akurat dan memakan waktu yang singkat.

"
1996
S38726
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1991
S38151
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rachmat Ramdani
"Penggunaan citra sidik jari untuk berbagai macam aplikasi telah banyak dikembangkan, antara lain untuk sistem keamanan, klasifikasi sidik jari, identifikasi manusia dan digunakan oleh kepolisian untuk mengidentikasi orang yang dicurigai atau terlibat dalam suatu kejahatan. Pada identifkasi tersebut masih sering digunakan metode konvensional, yaitu dilihat secara visual berdasarkan pada parameter yang ada pada buku pedoman dan petunjuk identifkasi di kepolisian. Dari beberapa metode yang telah dikembangkan untuk mengganti metode konvensional tersebut, diperlukan parameter pengontrol yaitu nilai bobot yang sesuai agar kesalahan (error) pelatihan dan pengecekan mendekati nol. Sehingga dalam mendapatkan nilai parameter yang sesuai tersebut dilakukan dengan coba-coba (trial and error) dan epoch yang besar serta dibutuhkan waktu yang lama.
Dalam penelitian ini, mengembangkan pemrograman modul pemrosesan citra menggunakan software Matlab versi 6.5 untuk mendapatkan data sudut rata-rata alur sidik jari (code arah) dan bifurkasi, serta proses pengenalan pola sidik jari menggunakan sistem penalaran adaptif yaitu sistem yang dapat mengontrol kesalahan (error) pelatihan dan pengecekan berbasis jaringan saraf dan logika fuzzy (neurofuzzy) dengan menggunakan tools Adaptive Neuro Fuzzy Inference System (ANFIS) yang ada di Matlab. Adapun sistem pengenalan pola sidik jari dilakukan dalam dua modul yaitu modul pemrosesan dan modul pengenalan. Pada modul pemrosesan terdiri dari proses pengambilan data citra yang berbeda dengan menggunakan scanning, proses perubahan citra sidik jari menjadi citra hitam-putih (biner), prosess penipisan (thinning) dan selanjutnya dilakukan ekstraksi citra sidik jari. Dalam modul pengenalan, dilakukan proses pengenalan data-data kode arah dan bifurkasi dari citra sidik jari yang berbeda menggunakan sistem penalaran adaptif berbasis neuro fuzzy.
Dari hasil penelitian, waktu untuk proses pengenalan dan pengecekan pola sidik jari menggunakan sistem penalaran adaptif berbasis neuro-fuzzy 6 detik dan epoch 100, lebih cepat dibandingkan dengan pengenalan pola sidik jari berbasis jaringan saraf (neural network) selama 14 detik Semakin kecil error rata-rata pengenalan pola sidik jari maka prosentase kemiripan watt kecocokan dengan citra target semakin besar. Prosentase kemiripan pada pengenalan pola sidik jari berdasarkan data kode arah mencapai 99%, jauh lebih tinggi dan lebih baik prosentasenya dibandingkan dengan pengenalan pola sidikjari berdasarkan data bifukasi yang hanya mencapai 76%.

Fingerprint images that used for divers kinds of application has been developed among others for security system, classification of fingerprint, identification of human being and also used by the police to identify any suspects or those engaged in a crime. The conventional identification method is frequently used, namely by means of visual identification based on the existing parameters in the directory of identification book From some methods that have been developed to replace the conventional method, appropriate control parameters are needed so error in training and checking is close to zero, therefore trial and error is carried out to get such appropriate parametric values and great epoch with time is longer.
In this research, we developed programming of the image processing module used Matlab software version 6.5 to have bifurcation code data and bifurcation data, and fingerprint pattern recognition process using adaptive reasoning system, namely a system which can control error of training and checking close to zero based on neural network and fuzzy logic with used Adaptive Neuro Fuzzy Inference System (ANFIS) tools in Matlab. The fingerprint pattern recognition system is carried out in two modules, that is processing module and recognition module. The processing module consists of a process of image data collection, which is different from the one, which uses scanning; a process of changing fingerprint images to black and white (binary) images, followed then by a process of thinning and then fingerprints extraction. In the recognition module, a process of identification of data on code of direction and bifurcation of fingerprint images, which is different from the one, which uses adaptive reasoning system, based on neuro-fuzzy.
From the result of research, we have time of fingerprint recognition using adaptive reasoning system based on neuro-fuzzy is 6 second and epoch 100, it is faster then fingerprint recognition using neural network If average errors is small then percentage of similarity input images with target fingerprint images are bigger. Percentage of similarity fingerprint recognition based on direction code is 99%, it is higher and most good then percentage fingerprint recognition based on bifurcation data that just result is 76%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2004
T14771
UI - Tesis Membership  Universitas Indonesia Library
cover
cover
Fakultas Teknik Universitas Indonesia, 1991
S38027
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1994
S39352
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Penelitian ini menjelaskan sebuah prosedur baru untuk menentukan nilai standar distorsi berminyak pada akuisisi citra sidik jari berdasarkan skor kejelasan dan rasio ketebalan ridge-valley. Citra sidik jari dikuantisasi ke dalam blok berukuran 32 x 32 piksel. Setiap blok dihitung orientasi garis yang tegak lurus terhadap arah ridge. Bagian tengah blok sepanjang arah ridge, vektor dua dimensi V1 dengan ukuran 32 x 13 piksel diekstraksi dan ditransformasi ke vektor
vertikal dua dimensi V2. Regresi linier diterapkan pada vektor satu dimensi V3 yang merupakan rata-rata dari V2 untuk menghasilkan determinant threshold (DT1). Area yang lebih kecil dari DT1 adalah ridge, sebaliknya adalah valley. Ujicoba kejelasan dilakukan dengan menghitung luasan citra yang tumpang tindih dari distribusi tingkat keabuan ridge dan valley yang telah dipisahkan. Ukuran rasio ketebalan ridge terhadap ketebalan valley dihitung per blok, ketebalan
ridge dan ketebalan valley diperoleh dari nilai tingkat keabuan per blok citra dalam arah normal ke arah ridge, nilai rata-rata rasio diperoleh dari luas keseluruhan citra. Hasil penelitian menunjukkan bahwa nilai standar distorsi berminyak pada akuisisi citra sidik jari dikatakan berminyak apabila citra memiliki nilai skor kejelasan lokal (LCS) antara 0,01446-0,01550, skor kejelasan global (GCS) antara 0,01186-0,01230, dan rasio ketebalan ridge-valley (RVTR) antara 6,98E-05-7,22E-05.

Abstract
This research describes a novel procedure for determining the standard value of the oily distortion of acquisition the fingerprint
images based on the score of clarity and ridge-valley thickness ratio. The fingerprint image is quantized into blocks size 32 x 32 pixels. Inside each block, an orientation line, which perpendicular to the ridge direction, is computed. The center of the block along the ridge direction, a two-dimension (2-D) vector V1 (slanted square) with the pixel size 32 x 13 pixels can be extracted and transformed to a vertical 2-D vector V2. Linear regression can be applied to the onedimension (1-D) vector V3 to find the determinant threshold (DT1). The lower regions than DT1 are the ridges, otherwise are the valleys. Tests carried out by calculating the clarity of the image from the overlapping area of the gray-level distribution of ridge and valley that has been separated. Thickness ratio size of the ridge to valley, it is computation per block, the thickness of ridge and valley obtained from the gray-level values per block of image in the normal direction
toward the ridge, the average values obtained from the overall image. The results shown that the standard value of the oily distortion of acquisition the fingerprint image is said to oily fingerprint when the images have local clarity scores (LCS) is between 0.01446 to 0.01550, global clarity scores (GCS) is between 0.01186 to 0.01230, and ridge-valley thickness ratio (RVTR) is between 6.98E-05 to 7.22E-05."
[Direktorat Riset dan Pengabdian Masyarakat Universitas Indonesia, Universitas Negeri Makasar. Fakultas Matematika dan Ilmu Pengetahuan Alam], 2011
pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Dewi Intan Oktarina
"Metode pengenalan sidik jari semakin berkembang pesat don banyak digunaknn saat ini. Baik untuk bidang keamunan ataupun untuk pembuatan kartu identitas lainnya. Tetapi kadangkala pada proses pangenalan jari tidak tepat peletakannya di scanner. Ketidaktepatan ini dapat berupa jari tidak benar-benar lurus pada bidang scanner (jari membentuk sudut terhadap sumbu y), atau pengguna meletakkan jarinya terbalik pada scanner. Berbagai metode telah dikembangkan untuk mengatasinya diantaranya metode yang menggunakan indeks grayscale untuk mengenalinya.
Pada skripsi ini metode pengenalan diuji untuk mengetahui sampai berapa jauh sidik jari dapat bergeser don masih dapat dikenali dengan baik. Pergeseran ini dinyatakan dalam satuan derajat (sudut). Untuk menyesuaikan dengan keadaan yang sebenarnya, pada system ini juga diuji nilai hasil korelasinya jika terdapat noise.
Dari hasil pengujian diperoleh bahwa sidik jari masih dapat dikenali dengan baik dan benar hanya sampal pergeseran maksimum 7.5°. Lebih besar dari 7.5° sidik jari masih dapat dikenali. Tetapi unluk beberapa image yang memiliki susunan warna yang rapat, sudah tidak dapat dikenali lagi."
Depok: Fakultas Teknik Universitas Indonesia, 2002
S39768
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>