Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 173201 dokumen yang sesuai dengan query
cover
Warneri
"Pemantauan kondisi adalah cara pemeliharaan yang sangat efektif agar kondisi permesinan dapat terpantau secara terus - menerus. Pemantauan kondisi melalui analisis getaran merupakan cara lain dalam menentukan kondisi permesinan, sehingga dalam menganalisis getaran perlu diketahui karakteristik dari getaran bagaimana sifat, letak, serta akibat yang didapat bila sudah terlihat pada spektrum getaran.
Melalui pemantauan kondisi ini bisa terlihat perkembangan kerusakan pada komponen serta bisa diramalkan kapan komponen itu diganti melalui besarnya amplitude yang terlihat pada spektrum getaran ditiap pengukurannya.
Hasil spektrum getaran dari tiap pengukuran bisa terlihat perkembangannya pada grafik kecenderungan getaran yang merupakan hasil keseluruhan spektrum getaran, karena getaran ini adalah energi yang merambat sehingga kondisi secara keseluruhan dari kondisi permesinan bisa terpantau.
Dari hasil analisis pada kompresor dan kotak roda gigi terlihat komponen yang menunjukkan kerusakan, jadi secara teori komponen yang terus bergerak dan bergesekan memiliki kecenderungan terjadi kerusakan. Untuk selanjutnya pemahaman terhadap getaran pelu dikaji lebih dalam karena setiap komponen yang bergerak memiliki frekuensi pribadi yang belum semuanya bisa terdeteksi secara keseluruhan."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S37843
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizal Kurniahadi
"Pemantauan kondisi telah dilakukan di turbin gas penggerak kompressor khususnya di bagian turbin gas set. Pemantauan dan pengambilan data getaran dilakukan di tiga titik utama pada turbin gas set. Kecenderungan getaran overall menunjukkan keadaan turbin gas set yang masih baik. Pemantauan kondisi menggunakan metode analisa getaran sangat baik dalam memberikan gambaran keadaan turbin gas set. Analisa frekuensi getaran dapat menunjukkan komponen yang terindikasi rusak.
Dengan menggunakan kecenderungan kenaikan amplitude getaran, waktu kerusakan komponen dapat diperkirakan. Keadaan turbin gas set secara umum masih berada dalam keadaan yang baik. Beberapa komponen menunjukkan indikasi kerusakan yang masih dalam batas toleransi. Pemantauan kondisi tetap harus dilakukan untuk memantau kondisi komponen kritis yang telah memiliki indikasi kerusakan dan untuk memantau indikasi kerusakan dari komponen kritis lainnya.

Condition monitoring have already applied on gas turbine compressor set particularly on gas turbine engine. Monitoring and derivation of vibration data have taken at three primary data point on ga\ turbine engine. Trending of overall vibration showed that gas turbine engine is still in good state. Condition monitoring with vibration analysis method is very good to give illustration about gas turbine engine condition. Vibration frequency analysis can slwwed which component indicate to damage.
By using trending of vibration amplitude, component breaking time are predictable. Generally, gas turbine engine condition still in good state. Several component showing damage indication but still in tolerance. Condition monitoring must continued to monitor critical component condition that has a damage indication and to monitor damage indication of another critical component.
"
Depok: Fakultas Teknik Universitas Indonesia, 2006
S37841
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dwijakangko Narapati
Depok: Fakultas Teknik Universitas Indonesia, 2003
S37292
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dietzel, Fritz
Jakarta: Erlangga, 1990
621.8 DIE t
Buku Teks  Universitas Indonesia Library
cover
Mohammad Asyraf
"Mesin turbin gas adalah sebuah mesin konversi energi yang menggunakan sistem turbin gas di dalamnya dan terdiri dari tiga komponen utama: kompresor, ruang bakar dan turbin gas. Mesin turbin gas juga merupakan suatu mesin kalor yang mengubah energi kalor menjadi energi mekanis secara kontinyu dan teratur. Beberapa kelebihan yang dimiliki suatu mesin turbin gas - seperti ukuran instaiasi yang relative kecil, getaran kecil, putaran tinggi, torsi yang tinggi, biaya per-satuan daya yang relative murah dan mudah pemeliharaannya membuatnya telah cukup banyak digunakan untuk berbagai aplikasi.
Namun dalam hal pengoperasiannya, suatu mesin turbin gas tidak selamanya memiliki performance yang terus menunjukkan peningkatan jika putaran kompresor, rasio tekanan ataupun laju aliran massa bahan bakarnya ditingkatkan. Ada batasan-batasan dimana unjuk kerja (perfonnance) dari suatu mesin turbin gas akan mencapai harga maksimumnya, yang kemudian akan mulai mengalami penurunan ataupun ketidakstabilan. OIeh karena itu, perlu kiranya untuk méngetahui bagaimanakah karakter operasional mesin yang sebenarnya.
Berdasarkan karakter aktual operasional mesin yang diperoleh, dapat diperkirakan dan kemudian ditentukan kondisi-kondisi operasional mesin yang baik dan benar, dalam pengertian bahwa mesin dapat bekerja secara setimbang, yaitu suatu kerja mesin yang menunjukkan adanya kesetimbangan antara jumlah bahan bakar yang dikonsumsi dengan daya keluaran (output power) yang dihasilkan.

A gas turbine engine is an energy convention engine which uses gas turbine system and consists of three main components : a compressor, a combustion chamber and a gas turbine. The gas turbine engine is also a heat engine which converts heat energy into mechanical energy continuously and regularly.
Some advantages of a gas turbine engine -such as it is relatively small size, generates small vibration, high speed and high torque. its cost per power unit is relatively cheap and its maintenance is easy-, makes this engine to be widely used in many applications.
But, in its operational, a gas turbine engine doesn't always show better performance as the compressor speed, pressure ratio or fuel mass flow is increased. There are limits where the performance of a gas turbine engine will reach the maximum value, and then will begin to drop or the engine will become instable. So, it is necessary to know the actual character of the engine, especially when the engine is running.
According to the actual character, the good and right operating conditions of the gas turbine engine can be-predicted and determined. So, the engine can run in its equilibrium conditions, where there is balance and compatibility between fuel which is consumed and output power which is generated by the engine.
"
Depok: Fakultas Teknik Universitas Indonesia, 2001
S37087
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tampubolon, Dennis Hotman
"ABSTRAK
Listrik merupakan kebutuhan yang sangat penting dalam kehidupan manusia pada abad ke-21. Salah satu upaya untuk memenuhi kebutuhan energi listrik tersebut adalah teknologi turbin gas. Oleh karena itu, desain impeler dari kompresor merupakan salah satu faktor yang mempengaruhi kinerja dari turbin gas. Metode yang dapat digunakan untuk menganalisis kinerja impeler kompresor adalah metode analisis segitiga kecepatan. Analisis segitiga kecepatan dilakukan dengan perhitungan komponen segitiga kecepatan menggunakan hasil pengukuran FARO Edge dan data aktual pengujian turbin gas GT85-2. Berdasarkan hasil perhitungan, kompresor menghasilkan daya teoritis sebesar 29,2 kW, daya aktual sebesar 24,3 kW, dengan efisiensi 83,15 pada kecepatan putar 90.000 rpm.

ABSTRACT
Electricity is the most important needs for humanity in 21st century. There is one technology to fulfill this need, called gas turbine. One of the factor that influence the performance of gas turbine is compressor impeller design. To analyze the performance of compressor rsquo s impeller, one of the method can be used is velocity triangle analysis. This analysis done by calculation of velocity triangle component that measured using FARO Edge and actual test data for gas turbine GT85 2. Based on the analysis, compressor can afford 29.2 kW theoretical power, 24,3 kW actual power, 83.15 hidrolic efficiency with 90,000 rpm rotational speed."
2017
S69764
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Mursyid A.
"Dewasa ini, kebutuhan akan turbin gas mikro (MGT) semakin meningkat. MGT adalah pembangkit daya yang menghasilkan daya dibawah 200kW. MGT Proto X-2 adalah sebuah pembangkit daya berbahan bakar solar dengan daya yang dihasilkan sekitar 7kW. Kompresor sentrifugal merupakan salah satu komponen penting dari MGT Proto X-2 yang memiliki fungsi untuk menyuplai udara ke ruang bakar. Pemahaman yang perlu diketahui mengenai kompresor sentrifugal diantaranya fenomena fisik, kurva karakteristik, dan unjuk kerja. Eksperimen dilakukan dengan mengontrol TIT (Temperature Inlet Turbine) saat Turbin Gas Mikro Proto X-2 running. Data-data yang didapatkan kemudian diolah untuk menghasilkan kurva karakteristik, disimulasikan dengan CFD, dan dianalisis. Dari pengolahan grafik diketahui bahwa data yang didapatkan kurang mencukupi untuk dibuatkan kurva karakteristik kompresor sentrifugal Turbin Gas Mikro Proto X-2. Rasio tekanan kompresor antara perhitungan eksak dan simulasi CFD menunjukkan bahwa rasio tekanan yang dihasilkan MGT Proto X-2 masih tergolong kecil karena terjadi surging pada annulus MGT Proto X-2.

Today, the need for a micro gas turbine (MGT) is increasing. MGT is a power plant that produces power below 200kW. MGT Proto X-2 is a diesel-fueled power plants with power generated approximate to 7kW. Centrifugal compressor is one important component of MGT Proto X-2 which has a function for supplying air to the combustion chamber. Phenomena that must be understanding of centrifugal compressor are physical phenomena, curve characteristics, and performance. Experiments carried out by controlling TIT (Temperature Inlet Turbine) when Micro Gas Turbine Proto X-2 running. The resulting data then processed to produce the characteristic curves, simulated by CFD, and analyzed. The resulting data are insufficient to be made centrifugal compressor curve characteristic of Micro Gas Turbine Proto X-2. Compressor pressure ratio between exact calculation and CFD simulations showed that the pressure ratio of MGT Proto X-2 is still relatively small due to surging on MGT Proto X-2 annulus."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43889
UI - Skripsi Open  Universitas Indonesia Library
cover
Recia Karina Melly
"Turbin gas merupakan mesin yang mengubah energi panas menjadi energi mekanik untuk menggerakkan mesin ataupun alat lain seperti kompresor, pompa, generator dan lain-lain. Mesin panas ini mengambil udara dari lingkungan sekitar oleh kompresor untuk dikompresikan sehingga tekanan aliran udara naik dan cukup untuk melakukan pembakaran. Udara terkompresi ini dicampur dengan bahan bakar yang kemudian dibakar untuk mendapatkan energi yang besar agar dapat menggerakkan turbin. Turbin akan menghasilkan daya putar yang digunakan dalam berbagai bidang seperti industri penerbangan, pembangkit listrik, minyak dan gas, dan lain-lain. Pada industri yang bergerak dibidang perminyakan dan gas, turbin gas digunakan untuk menggerakkan kompresor yang berfungsi untuk memompa minyak, transmisi pipa, injeksi gas, penyimpanan dan pengambilan gas, dan lain-lain. Untuk mendapatkan kerja yang optimal dari mesin-mesin tersebut, maka kedua mesin harus dapat bekerja sama dengan selaras. Setiap pemilihan turbin gas yang digunakan disesuaikan dengan kompresor yang tersedia. Untuk mendapatkan performa yang optimal dari set turbin gas dan kompresor, selama beroperasi perlu dilakukan analisis terhadap kinerja masing-masing mesin. Pemantauan ini kemudian dibandingkan dengan design point masing-masing mesin untuk mendapatkan gambaran yang jelas mengenai kinerja mesin saat beroperasi pada kondisi lapangan tertentu. Hasil perhitungan yang dilakukan terhadap set turbin gas Centaur 40 dan kompresor sentrifugal C3063 menunjukkan untuk turbin gas beroperasi pada off design point, namun masih berada pada area kerja dari turbin gas tipe tersebut. Sedangkan, pada kompresor booster beroperasi pada area dari design point dan tentunya pada area kerja yang telah dirancang dari pabrik untuk kondisi lapangan tertentu. Untuk matching antara set turbin gas dan kompresor booster pun berada pada area design point kedua mesin. Performa kedua mesin ini sangat dipengaruhi oleh temperatur dan tekanan ambien, humiditas, ketinggian, beban dan kecepatan putar poros. Jadi, sangat wajarjika kedua mesin tersebut bekerja tidak pada design pointnya asalkan masih di area operasinya.

Gas turbine is basically a heat engine in which generate and convert heat energy into mechanical energy to drive other engines or devices, such as compressor, pump, electric generator, etc. Air is sucked into the gas turbine by a compressor to increase its pressure then heated in the combustor to add heat energy into the air and expanded to drive a turbine. Gas turbine is variety in output power so it is used in many industrial for example in aircraft, power generation, oil and gas, etc. In oil and gas industry, gas turbine is used to drive a centrifugal compressor. This centrifugal compressor functions are to pump crude oil, pipeline transmission, storage and withdrawal gas, and re-injection gas. In order to get an optimum work from these engines, some analyses on their performance must be done when they operate at certain environment condition. This operation monitoring will be compare to the design point of engines to get information about their working area. The results from operation data calculations on Gas turbine Centaur 40 and booster compressor C3063 show that gas turbine operated in off design point area, but still in the operation enveloped of its design, while, booster compressor works in the area of its design point and obviously in its operation enveloped. For matching both of the engines, the operational engines are inside of the design point area. These engines performances are depends on some factors, such as ambient temperature, ambient pressure, air humidity, altitude, load, and rotational speed of shaft. As these factors give a big influence in operational performance, it is possible to the engines to work at off design but still in their operation enveloped."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S37842
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1998
S36917
UI - Skripsi Membership  Universitas Indonesia Library
cover
Steven Darmawan
"Turbin gas mikro (MGT) merupakan salah satu alternatif pembangkit daya dengan daya dibawah 200 kW untuk mengatasi kebutuhan energi yang semakin meningkat. Dalam satu dekade terakhir, MGT telah diproyeksikan sebagai salah satu sistem pembangkit daya maupun termal yang prospektif, secara teknis, dimensi, biaya, dan lingkungan. Dari berbagai komponen pada turbin gas, kompresor merupakan salah satu komponen yang berperan sangat penting karena mensuplai udara pembakaran. Rancang bangun dilakukan terhadap prototype MGT GT85-2, dengan menggunakan turbocharger Garrett TA31 sebagai komponen mesin turbo. Kompresor TA31 memiliki jumlah full blade 6 buah, spliter blade 6 buah, diameter inducer dan exducer masing-masing 47,4 mm dan 74,9 mm, serta sudut alir relatif inlet dan outlet masing-masing 32,64o dan 26,5o yang didapatkan melalui metode reverse engineering. Berdasarkan data ini, parameter-parameter unjuk kerja kompresor, yaitu: rasio tekanan, Mach Number, laju alir massa dan volume, serta kecepatan sudu dapat diketahui dengan metode teoritis. Selanjutnya, metode CFD digunakan untuk mengetahui pola alir kecepatan pada permukaan meridional antara full dan spliter blade. Pada simulasi CFD selanjutnya, radius splitter blade divariasikan menjadi 3 buah, yaitu radius standar 26.75mm, variasi a 25.68mm, dan variasi b 27.82 mm untuk masing-masing putaran poros uji (7480 rpm, 8002 rpm, 8892 rpm, 11820 rpm, dan 13000 rpm). Hasil simulasi dengan menggunakan CFDSOF® menunjukkan bahwa penggunaan splitter blade dengan variasi a menurunkan kecepatan sudu sebesar 0.37% secara rata-rata dan variasi b akan meningkatkan kecepatan sudu pada setiap putaran poros uji secara rata-rata sebesar 0.04% terhadap penggunaan splitter blade standar. Verifikasi hasil simulasi CFD terhadap hasil perhitungan teoritis menunjukkan bahwa terdapat perbedaan nilai rata-rata sebesar 8.22% untuk kompresor uji dengan splitter blade standar. Analisa terhadap hasil pengujian menunjukkan bahwa kompresor bekerja dengan kecepatan di bawah spesifikasinya.

To meet increased energy demand, Micro Gas Turbine (MGT) has become an alternative power source for power less than 200kW. On the last decade, MGT has been projected as a prospective power and thermal source in technical, dimension, cost, and environmental aspects. Prototype design of MGT GT85-2 has been done with the use of Garrett TA31 turbocharger as the turbomachine component. In gas turbine, compressor is a very important component for combustion air supply. The TA31 compressor consist of 6 full blades and 6 spliter blades with inducer and exducer diameter respectively 47.4 mm and 74.9 mm. Blade relative angle 32.64 degree inlet and 26.5 degree outlet angle was found from reverse engineering method, 3D scanning. Based on 3D scan output, compressor performance parameters, such as pressure ratio, Mach number, mass and volume flow rate has been found theoritically. Furthermore, CFD method used to understand the flow in meridional surface between full and splitter blade. Further CFD simulation varying the radius of splitter blade in 3 vaiant: standard radius 26.75mm, variation a 25.68mm, and variation b 27.82 mm for each testing speed (7480 rpm, 8002 rpm, 8892 rpm, 11820 rpm, dan 13000 rpm). CFD simulation done with CFDSOF® shows that the a variant radius decreased the blade speed of 0.37% on average compared to standard radius. Meanwhile the b variant increased the blade speed of 0.04% on average, compared to standard radius. Verification of the blade speed between CFD simulation result with theoretical results for standard radius showed that the CFD results are 8.22% lower on average. Analysis of the test result indicated that compressor operates at lower speed than specified."
Depok: Fakultas Teknik Universitas Indonesia, 2012
T31604
UI - Tesis Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>