Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 99295 dokumen yang sesuai dengan query
cover
Joko Purnomo
"Alat penukar kalor dikenal mempunyai banyak tipe yang dalam aplikasinya disesuaikan dengan kondisi operasi yang dlkehendaki. Dalam tulisan ini akan dlbahas kinerja dan karateristik alat penukar kalor dengan dua Fluida dingin jenis shell and tubes, aliran silang Iawan arah satu fluida (panas) bercampur (shell) sedang fluida lainnya (dingin) tidak (tubes), dengan banyak laluan (multipass cross flow one fluid is mixed and the other unmixed).
Kita akan mempelajari pengaruh empat konfigurasi aliran terhadap karateristik dan kinerja alat penukar kalor ini. Dipelajari pula pengaruh parameter aliran fluida panas dan fluida dingln, Serta Iuas permukaan perpindahan panas (simulasi) terhadap kinerja dan karateristik alat penukar kalor pada keempat kofiigurasl aliran tersebut serta mendapatkan nilai mass flow gas (Mg) transisi. Metoda yang dltempuh dalam penelitian ini adalah dengan simulasi melalui bahasa program Turbo Pascal dan uji eksperimental
Dari penelitian ini dikeetahui bahwa ada dua kondisi yang sangat berpengaruh terhadap kinerja dan karateristlk alat penukar jenis ini.
Jika temperatur kedua fluida dingin sama, konfigurasi aliran mempunyai kinerja terbaik, perubahan parameter aliran tidak berpengaruh terhadap karakteristik ini.
Jika temperatur dingin 1 dan dingin 2 berbeda, pada peningkatan mass flow gas, kontigurasi IV memiliki kinerja terbaik, namun jika mass flow terus dinaikkan akan menyebabkan terjadinya penurunan kinerja konfigurasi IV, mass flow gas pada kondisi ini disebut Mg transisi. Peningkatan temperatur gas menyebabkan Mg transisi bergeser turun. Sedangkan peningkatan temperatur dan mass flow fluida dingin sebaliknya.
Langkah terakhir dalam penelitian ini adalah membandingkan hasil eksperimental dengan hasil simulasi. Dari hasil penelitian ini menunjukkan signifikasi antara uji simulasi dengan eksperimental.
"
Depok: Fakultas Teknik Universitas Indonesia, 2000
S37647
UI - Skripsi Membership  Universitas Indonesia Library
cover
Budi Utomo
"Nanofluida adalah jenis fluida baru, yaitu pencampuran partikel nano dalam fluida dasar (air), dimana partikel nano ini tetap tersuspensi secara permanen dalam fluida dasarnya, akibat adanya gerakan Brownian dari partikel nano tersebut. Dalam menentukan karakteristik operasi dari alat penukar kalor dengan metoda grafik, penelitian dilakukan pada air-air dan menjelaskan hubungan kalor antara yang hilang dengan parameter - parameter lainnya, seperti aliran fluida dan sifat-sifat termal pada alat double pipe heat exchanger. Penelitian dilakukan pada nanofluida A1203, hasilnya menunjukkan peningkatan dalam koefisien perpindahan kalor konveksi dibandingkan dengan fluida dasarnya 2.1%-11.86% untuk konsentrasi partikel nano 1% dan 4.2% 17.38% untuk konsentrasi partikel nano 4%. Rasio peningkatan koefisien perpindahan kalor konveksi dari nanofluida juga meningkat, seiring dengan peningkatan temperatur (40°C - 60°C).

Nano fluids are a new kind of fluids; they are dispersion if nano particles in liquids that are permanently suspended by Brownian motion. To assign operation characteristic from heat exchanger with graphic method, Research shown at water to water assignment shows correlation between heat loss and other parameters, such as: fluids flow and thermal characteristic in double pipe heat exchanger. Research shown at nano fluid A1203 water 1% and 4%, the result shown the enhancement of heat transfer convective coefficient compared to the base fluids 2.1%- 11.86% for 1% particles concentration and 4.2% -17.38% for 4% particles concentration. The rate of increase of enhancement shows adrainatic increase with elevated temperature (40°C-60°C)."
Depok: Fakultas Teknik Universitas Indonesia, 2003
T14739
UI - Tesis Membership  Universitas Indonesia Library
cover
Toding, Nicolas
"Dalam beberapa aplikasi, terkadang digunakan teknik untuk menaikkan temperatur fiuida udara bersih yang dipergunakan untuk berbagai keperluan, diantaranya untuk keperluan unit pengering. Oleh karena itu dibutuhkan unit yang dapat menghasilkan udara panas. Unit penghasil udara panas yang dipakai untuk keperluan irii adaiah alat penukar kalor yang dapat memanfaatkan panas dari pembakaran sebagai fiuida pemanas. Kinerja dan karakteristik dari alat panukar kalor tergantung pada jenis material, jenis susunan aliran dan kondisi operasinya.
Salah satu alat penukar kalor ini adalah alat penukar kalor jenis pelat paralel horisontal yang tersusun atas beberapa Ialuan fiuida udara panas dari pembakaran dan fluida udara bersih yang dipanaskan Alat penui-(arkalor ini termasuk jenis cross flow both fluid is unmixed (aiiran silang dimana kedua fiuida udara tidak campur). Tujuan dari penelitian ini adaiah untuk mengetahui karakteristik dan performance alat penukar kaior dengan membandingkan nilai U (koetisien perpindahan kalor keseluruhan) dari perhitungan awal dengan hasil dari pengujian.
Dari penelitian ini dapat diketahui bahwa performance dari alat penukar kalor jenis pelat paralel horisontal baik dan layak dipergunakan sebagai alat penghasii udara panas bersih. Hal ini dapat diiihat dari karakteristik dari suhu yang dihasilkan pada keluaran fluida udara dingin dan nilai koefisien perpindahn kaior keseluruhan alat penukar kalor."
Depok: Fakultas Teknik Universitas Indonesia, 2000
S37631
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nandy Setiadi Djaya Putra
Depok: Departemen Teknik Mesin UI, 2012
621.402 NAN a
Buku Teks  Universitas Indonesia Library
cover
Indra Setiawan
"Alat penukar kalor (heat exchanger) mempunyai peran yang sangat penting dalam dunia industri, khususnya pada industri minyak dan gas bumi. Alat penukar panas ini berfungsi untuk menaikkan suhu fluida yang lebih rendah dan atau mendinginkan suhu fluida yang lebih tinggi. Di Santan Terminal, salah satu gathering station milik Chevron Indonesia Company, alat penukar kalor unit HE-7 digunakan untuk memberikan panas awal pada hydrocarbon C4+ dalam proses kondensat depropanizer, dengan mengambil panas dari hot oil system menggunakan Terminol 55 sebelum dilakukan pemprosesan lebih lanjut. Untuk mempertahankan kinerja alat penukar kalor unit HE-7, dilakukan penelitian dengan memodifikasi sistem kerja feeder pump yang ada pada proses proses kondensat depropanizer tersebut, sehingga tingkat kinerja alat penukar panas dapat dipertahankan pada nilai efesiensi yang diharapkan.

Heat exchanger has a very important role in the industrial world, especially in oil and gas industry. Heat exchanger serves to raise the fluid temperature which is lower and / or cool the fluid temperature wich is higher. At Santan Terminal, one of the gathering station owned by Chevron Indonesia Company, the unit heat exchangers HE-7 is used to provide initial heat to the hydrocarbon C4+ in the process condensate depropanizer, by taking heat from the hot oil system using Terminol 55 prior to further processing. To maintain the performance of the unit heat exchanger HE-7, research done by modifying the feeder system of pump work in the process of the condensate depropanizer, so the heat exchanger performance can be mantain at expected effeciency number. "
Depok: Fakultas Teknik Universitas Indonesia, 2011
S369
UI - Skripsi Open  Universitas Indonesia Library
cover
cover
Muhamad Reza Dirgantara
"ABSTRAK
Perhitungan perancangan alat penukar kalor pelat bersirip dengan metode
konvensional (integral) di mana suatu alat penukar kalor dianggap sebagai satu
keseluruhan, dan sifat-sifat aliran di evaluasi pada lemperatur rata-rata aliran, tidak
menunjukkan kondisi yang sebenarnya terjadi sepanjang alat penukar kalor
tersebut, sehingga hasil perhitungan ini memungkinkan terjadinya ketidak cocokan
dengan kondisi aktual di lapangan saat di operasikan.
Untuk mengatasi permasalahan di alas make suatu alat penukar kalor dapat
di bagi ke dalam banyak segmen, di mana perhitungan di lakukan secara bertahap
pada tiap segmen dengan melibatkan variasi sifat-sifat terrnohidrolis aliran. Metode
ini dinamakan metode diferensial sehingga dengan demiklan seorang pefancang
akan mendapatkan hasil perhitungan yang lebih akurat dan realistis serta dapat
memperkirakan karakteristik kerja alat penukar kalor tersebut sepanjang aliran
fluida.
Sebuah kode program dibuat untuk menerapkan metode perhitungan di atas
dan dilakukan perbandingan dengan metode perhitungan konvensional (integral)
pada bagian studi kasus. Hasil perhitungan menunjukkan bahwa tidak terjadi
perbedaan yang cukup signifikan antara hasil perhitungan metode integral dengan
diferensial pada perhitungan kalor (thermal performance) sedangkan pada
perhitungan jatuh tekan (pressure drop performance) perbedaan yang terjadi cukup
besar.
Dari pembahasan di atas dapat disimpulkan bahwa penggunaan metode
diferensial pada perancangan alat penukar kalor pelat bersirip memiliki tingkat
akurasi yang lebih balk, mengingat perhitungan yang dilakukan di dasarkan pada
pendekatan kondisi operasi alat penukar kalor yang sesungguhnya. Hal ini terlihat
pada perhitungan jatuh tekan di bagian studi kasus, dimana variasi sifat-sifat
termohidrolis cukup besar (khususnya densitas fluida, p) maka akan terjadi
perbedaan cukup besar pada harga jatuh tekan dibandingkan dengan metode
konvensional/integral.

"
1996
S36258
UI - Skripsi Membership  Universitas Indonesia Library
cover
Walfajri Anwar
"
ABSTRAK
Penelitian yang akan dibahas pada skripsi ini merupakan hasil pengamatan di lapangan yang berfungsi untuk meneruskan faktor pengotoran pada alat penukar kalor shell and tube.
Pengotoran adalah merupakan endapan yang memberikan tambahan tahanan termal terhadap aliran kalor dari udara panas ke udara dingin di dalam alat penukar kalor. Akibat adanya pengotoran, maka panas (energi yang dipindahkan akan berkurang sehingga terjadi pemborosan energi.
Penentuan besarnya faktor pengotoran dari teori-teori yang ada didalam buku masih sulit. Banyak sekali parameter-parameter yang dibutuhkan sehingga proses penentuannya akan memakan waktu yang lama.
Dengan bantuan teori analisa non-dimensional, akan dicari metode lain yang lebih mudah dan lebih cepat untuk menentukan faktor pengotoran tersebut. Yaitu dengan mendefinisikan sebuah bilangan non-dimensional yang mernpakan hubungan antara parameter-parameter awal yang didapat dari data lapangan (aliran massa dan temperatur). Bilangan tersebut adalah bilangan Fa Kemudian dicari hubungan antara bilangan Fa dan faktor pengotoran yang dihitung dengan teori yang diambil dari buku Process Heat Transfer karangan D. Q. Kern (tahun 1950).
Dengan bantuan label dan grafik didapatkan hubungan antara faktor pengotoran dan bilangan Fa, yang berupa hubungan linear sehingga membentuk suatu persamaan linear.
Melalui persamaan linear ini, kita dapat menirukan besarnya faktor pengotoran alat permlra kalor dengan mengetahui bilangan non-dimensional.
"
1997
S36619
UI - Skripsi Membership  Universitas Indonesia Library
cover
Candra Damis Widiawaty
"Riset ini bertujuan melakukan analisis prosedur desain dan redesain alat penukar kalor tipe shell and tube dengan CFD pada reboiler turbin mikro bioenergi proto x-2 dan CO2 stripper reboiler PT Pupuk Iskandar Muda. Metode desain dimulai dari kalkulasi manual metode Kern dan konstrain desain pressuredrop di sisi tube harus di bawah 277 Pa. Kemudian dilakukan simulasi 1 fasa SolidWork 2010 dan 2 fasa dengan sofware CFDSof. Metode redesain diawali dari analisis kondisi terpasang dilanjutkan dengan redesain dengan 3 model. Fokus redesain adalah untuk menganalisis korosi pendidihan dengan CFD dan perubahan desain untuk mengurangi fraksi uap.
Eksperimen reboiler turbin dan hasil simulasi menunjukkan peningkatan temperatur pada titik ukur 1 lebih cepat dibandingkan dengan titik ukur 2, sehingga uap lebih dulu terbentuk pada titik ukur 1. Hasil simulasi menunjukkan pembentukan uap mulai terjadi pada jarak 85 mm dari tubesheet. Berdasarkan simulasi 2 fasa, model redesain 2 yaitu posisi outlet shell 880 mm dari tubesheet adalah yang terbaik karena proses pendidihan lebih sedikit yang direpresentasikan oleh pembentukan fraksi uap tertinggi hanya 0,0002. Dengan mengunakan simulasi CFD, desain reboiler CO2 stripper reboiler lebih baik dibandingkan desain reboiler turbin, karena pada reboiler CO2 stripper reboiler penguapan terjadi mendekati outlet sehingga uap lebih lebih mudah keluar.

The aimed of this researched is analized procedure of design and redesign shell and tube heat exchanger used CFD for micro bioenergy gas turbine proto x-2 and CO2 stripper reboiler?s PT Pupuk Iskandar Muda. The design method was started with manual calculation using Kern method and the constrain was pressuredrop exhaust gas must be under 277 Pa. The next step was simulated the model with SolidWork 2010 for one phase and CFDSof for two phase. The method of redesign was previously analized the existing condition and then continued with changed the original model with 3 redesign model which is produced less vapor fraction.
The experiment and simulation of turbine reboiler showed that the temperature of water increasing faster at measuring point 1 than measuring point 2 therefore water vapor started at 85 mm from inlet of exhaust gas. The redesign 2 which is the distance outlet 880 mm from tubesheet was the best design because it's produced the lowest vapor fraction 0,0002. On all the CFD could showed the pendidihan process for both of the reboiler, it showed that the CO2 stripper reboiler design was better than the turbine reboiler because the vaporation was started near the outlet.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
T31064
UI - Tesis Open  Universitas Indonesia Library
cover
Ary Maulana
"Kinerja perpindahan kalor pada alat penukar kalor dapat ditingkatkan dengan mengurangi ukuran diameter hidrolik atau dengan menggunakan fluida kerja yang memiliki konduktivitas termal lebih baik dibandingkan dengan fluida kerja konvensional. Salah satu contoh penggunaan diameter hidrolik yang kecil adalah microchannel heat exchanger (MCHE). Pada penelitian ini, perancangan alat dan pengujian kinerja perpindahan kalor pada MCHE berkonfigurasi counter-flow dengan menggunakan fluida kerja air dan nano fluida Al2O3-air dengan konsentrasi 1%, 3%, dan 5% sebagai fluida pendingin telah dilakukan. Dalam pengujian, temperatur masuk fluida pada sisi panas dan sisi dingin MCHE diatur tetap pada temperatur 50°C dan 25°C, sedangkan debit aliran pada saluran masuk divariasikan dari 100 ml/menit hingga 300 ml/menit.
Hasil pengujian menunjukkan bahwa peningkatan konsentrasi partikel nano pada fluida dasar dapat meningkatkan kinerja perpindahan kalor fluida dasar tersebut. Pada konsentrasi partikel nano tertinggi yang digunakan dalam pengujian, nano fluida Al2O3-air konsentrasi 5% dapat menyerap panas sebesar 9% lebih baik dibandingkan air biasa dan dapat meningkatkan koefisien perpindahan kalor keseluruhan MCHE sebesar 13% lebih besar dibandingkan dengan air.

The heat transfer performance in heat exchanger can be enhanced by decreasing its hydraulic diameter or using working fluid that has better thermal conductivity than the conventional one. One of the examples of small hydraulic diameter application is microchannel heat exchanger (MCHE). Designing the MCHE and doing experimental investigation of the heat transfer performance on counter-flow MCHE by using water and Al2O3-water nanofluid with nanoparticle concentration 1%, 3%, and 5% as coolant fluid has been done in this experiment. Inlet fluid temperatures in hot and cold side are set at 50°C and 25°C, meanwhile the inlet flow rate is set from 100 to 300 ml/minute.
The experimental results show that the increase of nanoparticle concentration in the base fluid can enhance its heat transfer performance. In highest concentration of nanoparticle used in this experiment, Al2O3-water 5% nanofluid can absorb heat 9% better than conventional water do and can enhance the overall heat transfer coefficient of MCHE 13% higher than water.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43033
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>