Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 109624 dokumen yang sesuai dengan query
cover
Fakultas Teknik Universitas Indonesia, 1995
S36107
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhamad Anwari
"Alat penukar kalor banyak digunakan di industri kimia, pabrik, pembangkit daya, rumah sakit, alat transponasi bahkan di rumah kita. Penggunaan alat penukar kalor ini dapat sebagai alat untuk memanaskan atau mendinginkan fluida, tergantung pada proses yang diinginkan. Salah satu jenis alat penukar kalor yang paling banyak digunakan adalah alat penukar kalor selongsong dan pipa.
Dari banyak penggunaan alat penukar kalor solongsong dan pipa, penulis mengambil salah satu contoh penggunaanya yaitu pemanas air pengisi ketel yang digunakan pada pembangkit listrik tenaga uap, Pemanas air pengisi ketel ini menggunakan uap yang di ekstrasi dari turbin untuk memanaskan air pengisi ketel sebelum masuk ke ketel. Dengan penggunaan pemanas air pengisi ketel maka efesiensi siklus pembangkit tenaga uap akan meningkat karena pemanas air pengisi ketel akan mengurangi panas yang terbuang percuma di kondenser dan dampaknyajuga akan mengurangi ukuran kondenser.
Perhitungan yang akan dilakukan di dalam perancangan alat penukar kalor selongsong dan pipa untuk pemanas air pengisi ketel akan di batasi pada perpindahan kalor secara konduksi dan konveksi. Hal ini bukanlah berarti bahwa radiasi tidak penting dalam perancangan alat penukar kalor, karena berbagai penerapan di angkasa luar hal inilah yang penting di dalam perancangan alat penukar kalor. Dengan menggunakan prinsip konduksi dan konveksi, dan juga memperhatikan tahanan termal lainnya dan dibantu dengan menggunakan pemprograman excel maka pada akhirnya akan di dapatkan disain termal dari alat penukar kalor ini.

Heat exchangers are used in wide variety of applies itions. These include chemical industries, fabrication, power plant, hospital, transportations, even in ours houses. The use of heat exchangers can be to cool or to heat the fluids, dependly to that process we want. Ones of heat exchangers that have been using in many applications is shell and tube heat exchanger.
From many applications of shell and tube heat exchanger, the author takes one example of applications is using of steam power plant. That is feed water healers. Feed water heaters use extraction steam from turbine to heat feed water before come in 10 boiler. By using feed wafer heaters results in a higher cycle efficiency by reducing the amount of energy lost in the condenser and (he impact is the size of the main condenser can be reduced. Because the condensers for large steam turbine become so large that installation problems become awkward indeed. Thus having a third of the steam flow to the feed water healers is real help in this respect.
The calculations will he done in the shell and tube heat exchanger design to feed wafer heaters and will be limited of conduction and convection heat exchange. This is not mean the radiation is not important to heat exchangers design, in fact of the out space applications, radiaton is very important to heat exchangers design. By using principle of conduction and convection, and also see to the other resistance and helped by using excel so that at last will be got the thermal design of this heal exchanger.
"
Depok: Fakultas Teknik Universitas Indonesia, 2006
S37881
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Syafaat
"Pembangunan PLTU memerlukan bahan bakar. Oleh karena itu, perlu dilakukan suatu analisa energi agar efisiensi penggunaan bahan bakar meningkat. Berkaitan dengan hal tersebut maka dalam penulisan skripsi ini akan dilakukan suatu analisa exergi pada penentuan konfigurasi Feedwater Heater yang digunakan pada sistem air-uap PLTU. Analisis dilakukan dengan menghitung besar efisiensi exergi dari tiap konfigurasi Feedwater Heater. Perhitungan exergi dari sistem dilakukan dengan menggunakan bantuan cycle tempo 5.0. Diharapkan hasil analisa exergi ini dapat digunakan sebagai informasi teknis dalam pembangunan proyek PLTU kelas 1 x 25 MW

Due to the requirements of steam power plant construction which is going to spend a large amount of fuel and cost, energy and economy analysis are needed to improve the efficiency of fuel and total capital investment. Because of that, in this final assignment, exergy analysis will be used to choose feedwater heater configuration in water-steam system of steam power plant. The analysis will be done by calculating the amount of the efficient exergy from each of feedwater heater configuration. The calculation exergy of the system was done by using cycle tempo 5.0. The result of exergy are expected to be used as the technical information in contructing the 1 x 25 MW steam power plant."
Depok: Fakultas Teknik Universitas Indonesia, 2007
S37888
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agus Gunawan
"Pembangunan PLTU memerlukan bahan bakar dan biaya yang tidak sedikit. Oleh karena itu, perlu dilakukan suatu analisa energi dan ekonomi agar efisiensi penggunaan bahan bakar meningkat dan total biaya investasi lebih ekonomis. Berkaitan dengan hal tersebut maka dalam penulisan skripsi ini akan dilakukan suatu ANALISA TERMOEKONOMIK pada penentuan konfigurasi Feedwater Heater yang digunakan pada sistem air-uap PLTU.
Analisis dilakukan dengan menghitung besar efisiensi exergi dari tiap konfigurasi Feedwater Heater dan parameter dari segi ekonomi seperti : First capital invesment, Profit, Return time of investment. Perhitungan exergi dari sistem dilakukan dengan menggunakan bantuan cycle tempo 5.0. Diharapkan hasil ANALISA TERMOEKONOMIK ini dapat digunakan sebagai informasi teknis dan ekonomi dalam pembangunan proyek PLTU kelas 1 x 25 MW.

Due to the requirements of steam power plant construction which is going to spend a large amount of fuel and cost, energy and economy analysis are needed to improve the efficiency of fuel and total capital investment. Because of that, in this final assignment, exergy and thermoeconomics analysis will be used to choose feedwater heater configuration in water-steam system of steam power plant.
The analysis will be done by calculating the amount of the efficient exergy from each of feedwater heater configuration and the parameters from economics scale, such as : First capital investment, Profit, Return time of investment. The calculation exergy of the system was done by using cycle tempo 5.0. The result of exergy and thermoeconomics are expected to be used as the technical and economical information in contructing the 1 x 25 MW steam power plant.
"
Depok: Fakultas Teknik Universitas Indonesia, 2006
S37890
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Chairudin
"Pemanfaatan Pemanas air berbasis energi matahari atau dikenal Solar Water Heater mulai memasyarakar khususnya di Indonesia. Energi matahari sebagai pembangkit tenaga adalah energi yang tidalc memburuhkan biaya unruk mendapatkannya dan ramah Iingkungan Dengan demikian pengembangan pemanas air tersebut menjadi salah satu alternatif yang diminati konsumen.
Pada solar water terdapat dua komponen yang utama yaitu tangki penyimpanan dan koiektor. Pada umumnya tangki penyimpanan terbuat dari baja iahan karat sedangkan kolektor Ierbuat dari lembaga. Permasalahan yang terjadi adalah kegagalan pada tangki yaitu adanya kebocoran sebelum mosa umur pakai kurang dari 5 tahun.
Untuk mengetahui penyebab kebocoran, dilakukan prosedur analisa kegagalan terhadap sampel material solar water hearer sehingga dapat dilakukan iangkah-Iangkah pencegahannya yang dapa! memperpanjang umur pakai tangki lersebui.
Hasil penelitian menunjukkan terjadinya korosi piring dan crevice pada base material akibat pengaruh media korosif yang mengandung ion khlorida serta temperatur yang relatjpanas (sekitar 80°C). Kecenderungan terjadinya piring ditunjukkan dengan pengujian kurva polarisasi siklik Pada kenaikan temperatur korosi pirting makin mudah terjadi yang ditunjukkan dengan menurunnya breakdown poteniial dari + 0,260 V vs kalomel pada Iemperalur ruang (28° C) menjadi - 0,130 V vs kalomel pada temperatur 80°C serra rapat arus pasU"dari sekitar 104 Amp/cm? pada temperarur ruang menjadi sekilar .105 Amp/cmz. Kebocoran yang diakibarkan oleh laorosi pitting dari bagian dalam tang/ci selanjutnya menyebabkan terjadinya korosi crevice pada bagian Iuar tangki.
Selain itu terjadi pula korosi retak tegang (SCC) yang berupa intergranular dan transgranular cracking di sekitar daerah lasan serta adanya sensitisasi pada daerah HAZ Hieat ajected zone) yang menyebabkan preszpirasi karbida di baras burir. Ha! ini terjadi akibar pengaruh prose: pengelasan pada saat fabrikasi."
Depok: Fakultas Teknik Universitas Indonesia, 2001
S41433
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1997
TA2344
UI - Tugas Akhir  Universitas Indonesia Library
cover
Sukandar
"Tesis ini meneliti tentang kegagalan yang terjadi di sistem boiler feed water (BFW) di sebuah industri petrokimia. Kegagalan terjadi akibat adanya penipisan lokal pada ujung saluran injektor inhibitor dari pipa BFW, yang menyebabkan pipa mengalami kebocoran.
Untuk mengetahui penyebab kegagalan, dilakukan pengujian-pengujian menurut prosedur umum analisis kegagalan, yang mencakup pengujian-pengujian kekerasan, komposisi kimia, fraktografi/metalografi, produk korosi, polarisasi, efek pH, dan simulasi aliran.
Hasil pengujian menunjukkan bahwa kekerasan, komposisi kimia, dan struktur mikro pipa sesuai dengan spesifikasi material yang digunakan (ASTM A 106 grade B). Hasil pengujian produk korosi menunjukkan bahwa permukaan pipa terkorosi karena produk korosi mengandung elemen-elemen yang korosif. Pengujian polarisasi dan efek pH membuktikan bahwa laju korosi menurun dengan penambahan inhibitor dan peningkatan pH pada BFW. Pengujian simulasi menunjukkan bahwa terjadi turbulen pada aliran yang melewati nozzle check valve, tetapi pada ujung saluran injektor inhibitor tampak adanya daerah depresi dengan arah terbalik.
Berdasarkan hasil pengujian-pengujian tersebut dapat disimpulkan bahwa karena lokasi ujung injektor yang terletak di daerah depresi aliran, terbentuk caustic sebagai akibat reaksi antara inhibitor (Sodium Tripolyphosphatel Na3PO4) dengan air (BFW). Caustic menyebabkan ujung saluran injektor menjadi getas (embritllement) sehingga dengan aliran air yang rendah saja sudab dapat melepas lapisan caustic di ujung saluran injektor.
Untuk menghindari terjadinya caustic pada ujung saluran injektor inhibitor, maka posisinya disarankan untuk dijauhkan dengan jarak minimum 4 kali diameter luar pipa BFW, yaitu 1300 mm dari sumbu check valve. Dari simulasi aliran untuk jarak tersebut bebas dari daerah depresi aliran dan inhibitor langsung terbawa dan larut (diluted dengan BFW yang mengalir), dengan posisi pipa injektor tegak (90°).

The thesis is to investigate the failure happened in a boiler feed water (BFW) system of a petrochemical industry. The failure happened as cause of local thinning at the vicinity of inhibitor injector of BFW pipe, which cause the pipe leaked.
To find out the causes of the failure, some tests have been carried out based on the general procedure of failure analysis, which consist of hardness testing, chemical composition, fractography / metallographic, corrosion products, polarization, pH effects, and flow simulation.
Hardness Testing, chemical composition and micro structure show that the pipe material used are in accordance with the standard specification (ASTNE A 106 grade B). The test result of corrosion products show that the pipe surface corroded because the corrosion products contain corrosive elements. Tests of polarization and pH effects proved that the corrosion rate decrease by adding inhibitor and increase pH value. Test of flow simulation show that turbulence-created after the flow passed the nozzle check valve, but at the vicinity of inhibitor injector seem to be a depression area with a reversed flow.
Based on these tesis, it is concluded that the inhibitor injector located at the depression area, which created caustic as the chemist reaction between inhibitor (Sodium Tripolyphosphatel Na3PO4) and water (BFW). The caustic cause the vicinity of inhibitor injector become brittle, then only with low velocity of flow, the caustic layer can be removed.
Avoiding caustic happen at the vicinity of inhibitor injector, it is proposed that the inhibitor injector is located at least 4 times outside diameter of BFW pipe, i.e. 1300 mm, from the check valve axis. Results of flow simulation of some injector designs at the distance of 1300 mm, show that the injector is free from depression area and the inhibitor is diluted directly with flowing BFW, with the injector is vertical to the BFW pipe (90°)."
Depok: Fakultas Teknik Universitas Indonesia, 2002
T8525
UI - Tesis Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 2001
S41487
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1994
S36362
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dadan Handani
"Pada pusat listrik tenaga uap (PLTU) unit 3/4 Tanjung Priok, energi kimia yang berupa bahan bakar (MFO/residu) yang dibakar akan menghasilkan kalor yang se1anjutnya digunakan untuk memanaskan/mendidihkan fluida kerja {air) sampai pada tekanan dan temperatur dimana air sudah berupa uap kering. Uap kering yang memiliki energi potensial dan energi kinetik terscbut diallrkan ke turbin uap untuk memutar sudu-sudu turbin pada putaran 3000 rpm. Ketika akan menaikan daya nyata generator (pada kondisi generator telah berbeban/terhubung ke jaringan), langkah pertama yang dilakukan adalah menambah jumlah aliran bahan bakar untuk. menghasilkan jumlah aliran uap kering lebih banyak (sesuai dengan daya yang akan dibangkitkan generator) yang selanjutnya dialirkan menuju inlet turbin. Kemudian daya nyata generator dinaikan dengan mengatur switch pembatas beban (load limit). Pada skripsi ini dilakukan pengamatan dan perhitungan daya mekanik kotor {gross meclumical power), load angle {Ogen) generator, dan efisiensi PLTU unit 4 Tanjung Priok. Hasil pcrhitungan memmjukan bahwa adanya penambahan jumlah bahan bakar yang masuk burner akan mcningkatkan produkasi uap rnasuk turbin schingga nteningkntkan daya mckanik kotor turbin dan load angle (daya generator). Jumlah bahan bakar yang dikonsumsi pada daya generator 20 MW, 35 MW, dan 40 MW berpengaruh terhadap efisiensi PLTU yang mana terjadi penurunan cfisiensi sebesar 2,5 % pada da)'a generator 40 MW dari 20 l\·iW dan 1,9% pada daya generator 35 MW dari 20 MW."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>