Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 135275 dokumen yang sesuai dengan query
cover
"Tulangan baja di dalam beton bertulang dapat mengalami korosi. Korosi ini dapat terjadi akibat berbagai faktor, Salah satunya adalah faktor lingkungan. Air Iaut merupakan salah satu Iingkungan yang mempunyai dampak buruk terhadap beton bertulang.
Salah satu cara yang dapat dilakukan dalam memperlambat laju korosi pada tulangan baja adalah dengan menambahkan zat inhibitor dalam komposisi beton yang lnembungkus tulangan. Akan tetapi penambahan inhibitor ini terltu akan berpengaruh terhadap mutu beton. Kondisi inilah yang melatarbelakangi penelitian terhadap pengaruh inhibitor terhadap mutu beton ekspos di air Iaut.
Inhibitor yang diteliti pada penelitian ini adalah sanyawa Phosphate dalam tiga konsentrasi, yaitu 30 ppm, 60 ppm, dan 90 ppm. Hal yang ditinjau daiam penelitian ini adalah kekuatan tekan betonnya. Pengkondisian perlakuan dalam penelitian ini dilakukan dengan cara merendam beton pada Iaut yang sebenamya, dalam hal ini di Pelabuhan Kalijafat 5. Pengujian kuat tekan beton dilakukan pada kubus beton berukuran 15 x 15 x15 cm’ pada umur 30, 60, dan 90 hari.
Dari penelitian ini didapatkan hasil kuat tekan beton di air Iaut pada umur 30, 60. dan so hari, yaitu 30 ppm : 307,04 kglcmz, 353,89 kg/amz, can 304,82 kglcmz; 60 ppm : 331,85 kg/cm2, 344,82 kg/cm2, dan 364,07 kg/cm2; 90 ppm :
297,23 kg/cm2, 336,67 kg/cm2, dan 390 kg/cm2, standar: 343,33 kg/cm2, 353,26 kg/cm2, dan 347,76 kg/cm2. Kuat tekan baton yang daiam campurannya menggunakan air Iaut pada umur 30, 60, dan 90 hari adalah, Tanpa Inhibitor:
357,40 kg/cm2, 374,82 kg/cm2, dan 394,45 kg/cm2; 60 ppm : 344,08 kg/cm2, 350,37 kg/cm2, dan 350,74 kg/cm2.
Kekuatan beton yang paiing baik adalah beton yang campurannya menggunakan air Iaut tanpa inhibitor, tetapi campuran ini tidak dapat digunakan karena kandungan klorida dalam air Iaut melebihi 0,15%. Sehingga dapat disimpulkan bahwa konsentrasi optimum inhibitor phosphate ditinjau dari kuat tekannya adalah 60 ppm."
Fakultas Teknik Universitas Indonesia, 2006
S35246
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ayomi Dita Rarasati
"Korosi pada baja tuiangan seharusnya dapat tidak terjadi jika struktur komposit beton bertulang membungkus baja tulangan dengan rapat pada kondisi normal. Kondisi normal yang dimaksud adalah tidak tercemarnya air yang digunakan dalam campuran ataupun tidak tercemarnya kondisi Iingkungan konstruksi baton bertulang tersebut. Akan tetapi kondisi tersebut pada saat ini terkadang sulit dicapai mengingat semakin terbatasnya lahan yang ada sehingga konstruksi beton bertulang dibangun pada lingkungan yang tercemar seperti Iingkungan rawa yang memiliki pH rendah. Lingkungan pH rendah dapat menyebabkan Iaju korosi yang cepat pada tulangan beton. Salah satu cara untuk menanggulangi laju korosi yang cepat ini adalah dengan penggunaan inhibitor. Dengan penggunaan inhibitor sebagai aditif pada komposisi beton, maka diharapkan laju korosi pada baja tulangan dapat berkurang banyak. Kondisi inilah yang melatarbelakangi penelitian terhadap penggunaan inhibitor sebagai aditif pada komposisi beton serta pengaruhnya terhadap kualitas mutu beton selain pengaruhnya terhadap laju korosi tulangan.
Penelitian ini menitikberatkan pada pengaruh Phosphate terhadap laju Korosi baja tulangan dan kekuatan beton pada tiga macam konsentrasi inhibitor yang berbeda, yaitu 30 ppm, 60 ppm dan 90 ppm. Selain itu terdapat dua kondisi periakuan yang berbeda terhadap lingkungan beton, yaitu Iingkungan asam (pH 3) dan lingkungan netral (pH 7). Adapun baja tulangan yang digunakan pada penelitian ini adalah baja dengan mutu ST 37 dengan diameter 25 mm.
Uji korosi yang dilakukan adalah uji Immersion menggunakan sampel tulangan baja mutu ST 37. Spesimen berbentuk silinder berukuran diameter 25 mm dan tinggi 25 mm. Untuk mengukur laju korosi pada baja tulangan maka dilakukan pengukuran berat awal tulangan dan berat akhir tulangan. Berat akhir tulangan didapat setelah beton berumur 90 hari. Selisih dari berat awal dan berat akhir adalah berat yang hilang dari baja tulangan. Kehilangan berat inilah yang akan digunakan dalam perhitungan laju korosi. Untuk pengujian kekuatan beton dilakukan tes tekan beton berukuran 15x15x15 cm3 pada umur 28 dan 90 hari.
Dari penelitian didapatkan hasil laju Korosi pada pH 3, 30 ppm: 0.10 mpy, 60 ppm: 0.05 mpy, 90 ppm: 0.07 mpy, standar: 0.17 mpy. Laju korosi pada pH 7, 30 ppm: 0.15 mpy, 60 ppm: 0.15 mpy, 90 ppm: 0.12 mpy, standar: 0.09 mpy. Sedangkan kuat tekan beton pada pH 3 umur 28 hari dan 90 hari, 30 ppm: 373.33 kg/cm2 dan 477.78 kg/cm2, 80 ppm: 421.11 kg/cm2 dan 454.44 kg/cm2, 90 ppm: 424.44 kg/cm2 dan 431.11 kg/cm2, standar: 388.89 kg/cm2 dan 395.58 kg/cm2. Kuat tekan beton pada pH 7 umur 28 hari an 90 hari, 30 ppm: 370.00 kg/cm2 dan 440.00 kg/cm2, 60 ppm: 396.11 kg/cm2 dan 485.56 kg/cm2, 90 ppm: 422.22 kg/cm2 dan 478.89 kg/cm2, standar: 416.67 kg/cm2 dan 482.22 kg/cm2.
Sehingga dapat disimpulkan bahwa inhibitor Phosphate efektif bekerja pada pH 3 dengan konsentrasi 60 ppm. Selain itu Iaju korosi juga akan meningkat jika pH di Iingkungan sekitar tulangan asam.

Corrosion on reinforcement should not be happened if the composite structure of reinforced concrete covered all the reinforcement surface in nonnal condition. The normal condition means that the water used in the mixture was not contaminated or the environment of reinforced concrete was not polluted. Nevertheless, that normal condition is not always available, for example, in places with acid environment. The acid environment can increase the corrosion rate in reinforcement higher. Using the inhibitor is one of the ways to prevent the increasing corrosion rate.
This research is emphasized on the effect of Phosphate as the inhibitor. The concentrations that were used are 30 ppm, 60 ppm and 90 ppm. There were also two different kinds of environment applied in treating the concrete: acid environment (pH 3) and neutral environment (pH 7). The reinforcement that was used is steel with ST 37 base and 25 mm diameter. The corrosion test was done by using Immersion method or weight loss method and testing the concrete strength was done by using the compressive strength test.
As a result, the corrosion rate that was obtained from the observation were, in pH 3, 30 ppm: 0.10 mpy, 80 ppm: 0.05 mpy, 90 ppm: 0.07 mpy, standard: 0.17 mpy.
Result in pH 7, 30 ppm: 0.15 mpy, 60 ppm: 0.15 mpy, 90 ppm: 0.12 mpy, standard: 0.09 mpy. Compressive strength of the concrete in pH 3 at 28th days and 90th days, 30 ppm: 373.33 kg/cm2 and 477.78 kg/cm2, 60 ppm: 421.11 kg/cm2 and 454.44 kg/cm2, 90 ppm: 424.44 kg/cm2 and 431.11 kg/cm2, standard: 388.89 kg/cm2 and 395.56 kg/cm2. Result in pH 7 at 28th days and 90th days, 30 ppm; 370.00 kg/cm2 and 440.00 kg/cm2, 60 ppm: 396.11 kg/cm2 and 485.56 kg/cm2, 90 ppm: 422.22 kg/cm2 and 478.89 kg/cm2, standard: 416.67 kg/cm2 and 482.22 kg/cm2.
From these results, it can be concluded that Na3PO4 12H2O inhibitor can be used in acid environment (pH 3) with 60 ppm concentration.
"
Depok: Fakultas Teknik Universitas Indonesia, 2003
S35419
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Winni Rezki Wulandari
"Salah satu nutrien utama yang mengakibatkan terjadinya eutrofikasi pada sistem akuatik adalah senyawa fosfat. Jumlah fosfat yang tinggi di sistem akuatik mengakibatkan kualitas air menjadi menurun dan keseimbangan ekosistem menjadi terganggu. Fenomena eutrofikasi ini dapat diatasi dengan suatu metode, yaitu adsorpsi yang dipengaruhi oleh suatu adsorben. Abu terbang batubara telah menjadi perhatian oleh para peneliti untuk dijadikan sebagai adsorben dalam adsorpsi fosfat. Dalam penelitian ini, dilakukan modifikasi abu terbang dengan asam, yang terdiri dari H2SO4, HCl dan campuran kedua asam tersebut serta dilakukan modifikasi abu terbang menggunakan basa, yaitu NaOH secara hidrotermal. Hasil modifikasi abu terbang dikarakterisasi dengan menggunakan XRF, XRD, SEM, FTIR dan SSA lalu dijadikan sebagai adsorben untuk adsorpsi fosfat dan dibandingkan dengan abu terbang tanpa modifikasi. Berdasarkan hasil penelitian menunjukkan bahwa kapasitas adsorpsi fosfat dari abu terbang termodifikasi asam dan abu terbang modifikasi basa secara hidrotermal memiliki nilai yang lebih besar dibandingkan dengan abu terbang tanpa modifikasi. Abu terbang termodifikasi asam, yaitu HCl, H2SO4 dan campuran kedua asam tersebut memiliki kapasitas adsorpsi masing-masing mencapai 0,606 mg P-PO4/g, 0,655 mg P-PO4/g, dan 0,705 mg P-PO4/g
dengan %efisiensi adsorpsi sebesar 73,58%, 79,60% dan 85,62%. Abu terbang modifikasi basa secara hidrotermal memiliki kapasitas adsorpsi mencapai 0,677 mg P-PO4/g dengan %efisiensi sebesar 82,27%. Sementara, abu terbang tanpa modifikasi memiliki kapasitas adsorpsi mencapai 0,485 mg P-PO4/g dengan %efisiensi sebesar 60,07%. Kondisi pH optimum adsorpsi fosfat diperoleh pada pH 7 untuk adsorben abu terbang yang telah
dimodifikasi dan pH 5 untuk abu terbang tanpa modifkasi. Model isoterm yang sesuai pada kelima adsorben ini adalah isoterm Freundlich.
One of the main nutrients that causes eutrophication in aquatic systems is phosphate compounds. The high amount of phosphate in the aquatic system results in decreased water quality and the balance of the ecosystem is disturbed. This eutrophication phenomenon can be overcome by a method, namely adsorption which is influenced by an adsorbent. Coal fly ash has been of interest by researchers to be used as an adsorbent in phosphate adsorption. In this study, fly ash was modified with acid, consisting of H2SO4, HCl and a mixture of the two acids and modified fly ash using a base, namely NaOH hydrothermally. The modified fly ash was characterized using XRF, XRD, SEM, FTIR and AAS and then used as an adsorbent for phosphate adsorption and compared with fly ash without modification. The results showed that the phosphate adsorption capacity of acid modified fly ash and base modified fly ash hydrothermally had a higher value than unmodified fly ash. Acid-modified fly ash, namely HCl, H2SO4 and a mixture of the two acids had adsorption capacities of 0.606 mg P-PO4/g, 0.655 mg P-PO4/g, and 0.705 mg P-PO4/g respectively.
with % adsorption efficiency of 73.58%, 79.60% and 85.62%. Hydrothermal base modified fly ash has an adsorption capacity of 0.677 mg P-PO4/g with an efficiency of 82.27%. Meanwhile, unmodified fly ash has an adsorption capacity of 0.485 mg P-PO4/g with an efficiency of 60.07%. The optimum pH conditions for phosphate adsorption were obtained at pH 7 for fly ash adsorbents that had been modified and pH 5 for fly ash without modification. The suitable isotherm model for these five adsorbents is the Freundlich isotherm."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Halomoan, Panusur Jansen
"Beton sebagai salah satu material yang paling sering digunakan untuk struktur bangunan, memiliki andil yang sangat besar dalam pembangunan di zaman modern. Ini terlihat pada banyaknya bangunan-bangunan yang terbuat dari beton, mulai dari gedung-gedung pencakar langit, bendungan, jalan, perkantoran, dll. Hal ini dapat terjadi karena beberapa kelebihan yang dimiliki oleh beton itu sendiri, seperti kekuatannya, banyaknya variasi bentuk yang bisa dibuat, ketahanannya terhadap api (sekitar 1 hingga 3 jam tanpa bahan kedap api tambahan), regiditas tinggi, mudah didapatnya material untuk campuran beton, biaya pemeliharaan yang rendah dan kemudahan dalam pelaksanaan. Namun seperti yang kita ketahui dalam suatu struktur yang menggunakan beton, beton tidak berdiri sendiri namun bekerja bersama dengan tulangan baja didalam satu kesatuan menjadi suatu struktur beton bertulang. Kekuatan tulangan baja sebagai material yang menahan tarik dapat berkurang dengan adanya korosi. Korosi dapat terjadi akibat lingkungan yang korosif maupun akibat sifat permiabilitas beton itu sendiri. Inhibitor diketahui memiliki kemampuan untuk mengurangi laju korosi.
Skripsi ini akan membahas mangenai pengaruh inhibitor terhadap campuran beton dalam andilnya mengurangi laju korosi pada baja tulangan sekaligus mengetahui pengaruhnya terhadap kekuatan tekan beton. Beton adalah campuran antara semen, agregat kasar, agregat halus dan air. Mutu beton dipengaruhi oleh rasio air semen, pemadatan dan daya kerja. Korosi merupakan kerusakan secara perlahan-lahan dari suatu material atau substansi yang merupakan simbol dari proses kimia atau dapat diartikan sebagai proses reaksi elektrokimia dari logam yang beraksi dengan lingkungannya. Inhibitor adalah suatu bahan kimia yang ketika ditambahkan dalam jumlah konsentrasi yang tertentu pada suatu lingkungan, dapat secara efektif mengurangi laju korosi. Inhibitor yang digunakan adalah asam askorbat. Inhibitor asam askorbat bekerja dengan cara bereaksi dengan logam membentuk lapisan pada permukaan logam sehingga membatasi serangan ion-ion korosif pada permukaan logam dan reaksi korosi dapat dikurangi. Penelitian akan dimulai dengan membuat sampel kubus beton dengan ukuran 10.5x10.5x10.5 cm_ untuk beton dengan tulangan dan sampel beton tanpa tulangan dengan ukuran 15x15x15 cm, sampel beton yang ada divariasikan dengan ada tidaknya penambahan inhibitor asam askorbat dan berbedanga media penyimpanan yaitu pH 3 dan pH 7. Pengujian akan dilakukan dengan menggunakan uji tekan beton untuk mengetahui kekuatan tekan beton dan uji laju korosi untuk mengetahui laju korosi pada baja tulangan.
Dari penelitian yang dilakukan, didapat hasil sebagai berikut : 1. Lingkungan yang asam (pH 3) dapat menyebabkan penurunan kuat tekan beton mutu K350 2. Penambahan inhibitor pada beton menyebabkan penurunan kuat tekan pada beton mutu K350 3. Pada kondisi lingkungan yang asam (pH 3) beton standar K350 yang tidak diberi tambahan inhibitor memiliki laju korosi yang lebih kecil (0,17 MPy) dibandingkan dengan beton yang diberi tambahan inhibitor (K60ppm= 0,3 MPy; K90ppm= 0,3 MPy dan K120ppm= 0,20 MPy) 4. Pada kondisi lingkungan yang netral (pH 3 ) beton standar K350 yang tidak diberi tambahan inhibitor memiliki laju korosi yang lebih kecil (0,09 MPy) dibandingkan dengan beton yang diberi tambahan inhibitor (K60ppm= 0,25 MPy; K90ppm= 0,22 MPy dan K120ppm= 0,10 MPy) 5. Pada kondisi lingkungan yang asam, inhibitor dengan konsentrasi 120 ppm paling efektif digunakan karena menghasilkan kuat tekan yang cukup tinggi (468 kg/cm) dibandingkan dengan beton tanpa penambahan inhibitor (395,56 kg/cm) serta menghasikan laju korosi yang cukup rendah (0,20 MPy) 6. Pada kondisi lingkungan yang netral, sebaiknya tidak diberikan penambahan inhibitor pada suatu campuran beton mutu K350 sebab pada kondisi ini beton menghasilkan kuat tekan yang terbesar (482 kg/cm) dan laju korosi yang terkecil (0,09 MPy)"
Depok: Fakultas Teknik Universitas Indonesia, 2003
S35437
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurisa
"Beton bertulang merupakan bahan yang sangat umum digunakan pada sistem-sistem konstruksi. Seiring dengan meningkatkannya kebutuhan manusia dan peningkatan laju pertumbuhan populasi serta kemajuan teknologi, menuntut ketersediaan lahan yang memadai untuk pembangunan infrastruktur tersebut. Pada umumnya, struktur suatu bangunan direncanakan dapat berfungsi selama masa layan tertentu. Namun, selama masa layan ini, bangunan beton bertulang rentan terhadap kerusakan akibat berbagai hal seperti korosi terutama jika bangunan berada pada lingkungan agresif. Korosi baja tulangan merupakan penyebab utama turunnya umur layan struktur beton bertulang. Volume senyawa hasil reaksi korosi baja tulangan dapat menempati 3 kali volume baja yang terkorosi sehingga menyebabkan tekanan pada beton. Kerugian akibat korosi di Indonesia diperkirakan mencapai angka trilyun rupiah. Inhibitor dalam jumlah optimum dapat ditambahkan sebagai substansi kimia yang sangat efektif dalam mengurangi laju korosi baja tulangan. Metode yang digunakan untuk mengukur laju korosi dalam penelitian adalah weight loss of metal dan polarisasi. Berdasarkan metode weight loss of metal, diketahui laju korosi menurun hingga 92,07 % pada hari ke-120 dengan penambahan inhibitor Phosphate 90 ppm pada air laut konsentrasi normal dan 93,06 % dengan penambahan inhibitor Phosphate 60 ppm pada air laut konsentrasi tinggi. Berdasarkan metode polarisasi, diketahui laju korosi menurun sebanyak 70 % pada hari ke-90 dengan penambahan inhibitor Phosphate 60 ppm pada air laut konsentrasi normal dan 72,53 % pada air laut konsentrasi tinggi dengan penambahan inhibitor Phosphate 90 ppm. Sehingga, umur layan beton meningkat hingga dua kali lipat dari umur layan beton tanpa inhibitor. Laju korosi menurun sebesar 50 % pada air laut dengan konsentrasi Cl- sebanyak 11 ? 14 % dari volume air laut dibandingkan dengan air laut dengan konsentrasi Cl- sebanyak 1 ? 1,4 % dari volume air laut.

Reinforced concretes are material that generally used in construction systems. As the increase of human needs, population number and technologies, demand sufficient site procurement to build those structures. This condition forces civil engineer to build structure on unqualified or corrosive area, like sea water environment. Usually, a structure plans to be used in certain durability. But, this durability fragile from damage that caused by several things such as corrosion, specially if the structure build on aggresive environment. Corrosion of steel in concrete is the main cause of durability degradation of the reinforced concrete structure. Corrosion product volume will be three times bigger than steel volume which causing longitudinal crack to the concrete and reduce steel?s diameter. Corrosion loss in Indonesia cost billion of rupiahs. Inhibitor in sufficient volume can be added as chemical mixture and will reduce the corrosion rate. Inhibitor that used in this research are Phosphate and Nitrite. Measuring corrosion rate method that used in this research are weight loss of metal dan polarization. The research shows that the use of Phosphate as inhibitor is more effective than Nitrite and consider that Nitrite is chemically danger to environment. Based on weight loss of metal corrosion measuring methods, corrosion rate decrease until 92,07 % in day-120 with Phosphate 90 ppm addition in normal sea water and 93,06 % in day-120 with Phosphate 60 ppm addition in high concentration sea water. Based on polarization corrosion measuring methods, corrosion rate decrease until 70 % in day-90 with Phosphate 60 ppm addition in normal sea water and 72,53 % in day-90 with Phosphate 90 ppm addition in high concentration sea water. Those inhibitor increase durability of reinforced concrete structure two times higher than the structure without using inhibitor. Research also shows that Cl- added as much as 11 ? 14 % of sea water volume cause decrease of corrosion rate until 50 % compared with normal Cl- concentration 1,1 ? 1,4 % of sea water volume."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S35312
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sulistyoweni Widanarko
Depok: Fakultas Teknik Universitas Indonesia, 2003
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Raden Nafian Priatmojo
"Beton merupakan material penting yang banyak digunakan dalam pembangunan infrastruktur. Sehingga penggunaan semen sebagai bahan dasar pengikat beton juga akan semakin meningkat setiap tahunnya. Namun yang harus diperhatikan dalam proses produksi semen ini ialah terjadinya pelepasan karbon dioksida (CO2) yang sangat banyak ke atmosfer dan dapat menyebabkan kerusakan lingkungan. Untuk mengatasi permasalahan tersebut dibutuhkan material lain sebagai bahan pengganti semen yang lebih ramah lingkungan. Beton geopolimer merupakan salah satu alternatif untuk menggantikan beton yang berbahan dasar semen sebagai material yang kurang ramah lingkungan. Pembuatan beton geopolimer tidak menggunakan semen sebagai bahan pengikat melainkan menggunakan Abu Terbang (Fly Ash) sebagai penggantinya yang kaya akan Silika dan Alumina dan dapat bereaksi dengan cairan alkalin untuk menghasilkan bahan pengikat (binder). Penggunaan silica fume sebesar 10% dalam campuran pasta juga akan diamati dalam pengaruh terhadap sifat mekanik beton setelah beton direndam dalam lingkungan air danau selama 1 bulan. Tes kuat tekan menggunakan sampel berbentuk silinder 15x30cm dengan curing selama 72 jam pada suhu 800C dilakukan untuk membandingkan setiap benda uji dari komposisi silica fume dan juga kondisi lingkungan yang berbeda. Hasil studi menunjukkan bahwa kuat tekan beton dipengaruhi oleh penambahan 10% silica fume dan juga dalam kondisi perendaman di air danau. Nilai kuat tekan beton geopolimer tanpa silica fumesebelum perendaman memiliki kekuatan rata-rata 23,65 MPa dan menurun setelah direndam dalam air danau sebesar 9,20 MPa menjadi 14,45 Mpa. Sedangkan kuat tekan beton geopolimer dengan penambahan 10% silica fume sebelum perendaman memiliki kekuatan rata-rata 11,82 MPa dan meningkat setelah direndam dalam air danau sebesar 6 MPa menjadi 17,80 MPa. Selain itu uji XRD juga dilakukan pada beton setelah perendaman untuk mengetahui unsur-unsur yang terbentuk pada beton ketika berada di lingkungan air danau. Hasil XRD menunjukkan adanya kandungan kuarsa dan microcline (KAlSi3O8) pada beton dengan penambahan 10% silica fume. Microcline sendiri memiliki nilai kekuatan yang baik pada skala Mohs yaitu sebesar 6 (orthoclase). Sedangkan hasil XRD pada beton geopolimer tanpa penambahan silica fumedidapatkan kandungan kuarsa, microcline(KAlSi3O8), calcite (CaCO3) dan CSH (Calcium Silicate Hydrate). Adanya kandungan calcite (CaCO3) dan CSH menunjukkan terperangkapnya udara pada beton dan juga perembesan air yang terjadi yang menyebabkan terjadinya reaksi hidrasi sehingga dapat menurunkan kekuatan beton geopolimer setelah perendaman.

Concrete is an important material and widely used in building construction. Therefore, the use of cement as concrete binder will also increase within the next few years. However, the release of Carbon Dioxyde during the production of cement can be harmful for environment. To overcome this difficulty, another material is needed to replacement. Geopolymer concrete is one of the alternative materials that can be used without any side effects towards environment. Cement is not used during the production of Geopolymer Concrete. Instead, Fly Ash is used as a binder because of its richness in Silica and Alumina and its capability to react with alkaline solution to produce a binder. The use of silica fume amounting to 10% of the mixture will also be observed on its effects towards the mechanical properties of geopolymer concrete that was submerged inside the fresh water lake for a month. Compressive strength tests using samples of cylindrical 15x30cm with curing for 72 hours at a temperature of 800C was performed to compare each samples of geopolymer concrete with difference in silica fume composition and different environmental condition. The compressive strength of geopolymer concrete without silica fume before immersion has an average of 23.65 MPa and decreased after immersion in water lake at 9.20 MPa to 14.45 MPa. While the geopolymer concrete compressive strength with the addition of 10% silica fume before immersion has an average power of 11.82 MPa and increased after immersion in water lake by 6 MPa to 17.80 MPa. XRD test was also conducted after submerging the geopolymer concrete to analyze elements that was formed when the concrete was being submerged inside the lake. XRD results showed the content of quartz and microcline (KAlSi3O8) in geopolymer concrete with the addition of 10% silica fume. Microcline itself has good hardness on the Mohs scale is equal to 6 (orthoclase). While the results of XRD on geopolymer concrete without the addition of silica fume content of quartz, microcline (KAlSi3O8), calcite (CaCO3) and CSH (Calcium Silicate Hydrate). The content of calcite (CaCO3) and CSH showed air trapping in the concrete and water seepage that occurs the causes of hydration reaction so as to reduce the strength of geopolymer concrete after soaking."
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59709
UI - Skripsi Membership  Universitas Indonesia Library
cover
Indra Syahrul Fuad
"Beton merupakan salah satu bahan konstruksi yang telah umum digunakan. Bahan penyusun beton terdiri dari bahan semen, agregat kasar, agregat halus, air. Untukmengetahui danmempelajari perilaku elemen gabungan (bahan-bahan penyusun beton), kita memerlukan pengetahuan mengenai karakteristik masing-masing komponen. Karakteristik kualitas agregat halus yang digunakan sebagai komponen struktural beton memegang peranan penting dalam menentukan karakteristik kualitas struktur beton yang dihasilkan, sebab agregat halus mengisi sebagian besar volume beton. Salah satunya diamati pada penelitian ini yaitu pasir laut dari Provinsi Lampung yang memiliki karakteristik butiran yang kasar dan gradasi (susunan besar butiran) yang bervariasi serta memiliki kandungan garam-garaman klorida (Cl) dan sulfat (SO4) yang tidak melebihi batas yang ditetapkan.Penelitian ini juga mengamati pasir sungai dari Palembang, dimana pasir Sungai yang memiliki sumber (Quarry) yang cukup dan Pasir Sungai sering di gunakan untuk campuran pembuatan beton,akan tetapi pasir sungai yang sering di gunakan dalam campuran pembuatan perlu di teliti lebih lanjut untuk mengetahui kadar lumpur dari pasir sungai tersebut apakah pasir sungai yang akan di gunakan memiliki kadar lumpur yang layak dalam peraturan acuan campuran pembuatan beton.
Di dalam penelitian ini, menggunakan beton mutu K 225 yang merupakan campuran air, semen, agregat kasar,dan agregat halus dengan treatment yaitu mencuci dengan air tawar dan yang tidak dicuci. Dan dilakukan pengujian kuat tekan dan kuat lentur, yang bertujuan untuk mengetahui berapa besar pengurangan atau penambahan kuat tekan beton lentur terhadap faktor keamanan suatu bangunan, untuk dapat diaplikasikan pada bangunanbangunan masyarakat umum.
Dari hasil penelitian dan pembahasan yang telah dilakukan dapat ditarik kesimpulan bahwa dari hasil uji kuat tekan beton yang menggunakan pasir sungai dengan perlakuan (BPST) mengalami peningkatan 45,85 kg/cm2 atau sebesar 22,35 % dari beton yang menggunakan pasir sungai dalam kondisi sebenarnya (BPS). Sedangkan pada kuat tekan beton menggunakan pasir laut dengan perlakuan (BPLT) mengalami peningkatan sebesar 6,25 kg/cm2 atau sebesar 2,23 % dari beton yang menggunakan pasir laut dalam kondisi sebenarnya (BPL). Kuat lentur beton yang menggunakan pasir sungai dengan perlakuan (BPST) mengalami peningkatan sebesar 6,8 kg/cm2atau sebesar 16,67 % dari pasir sungai dalam kondisi sebenarnya (BPS), kuat lentur yangmenggunakan pasir laut dengan perlakuan (BPLT) mengalami peningkatan sebesar 6,79 kg/cm2 atau sebesar 14,27 % dari pasir laut dalam keadaan yang sebenarnya (BPL)."
Palembang: Fakultas Teknik Universitas Tridinanti Palembang, 2015
691 JDT 3:1 (2015)
Artikel Jurnal  Universitas Indonesia Library
cover
Angga Herdiansjah
"Pada dasarnya beton adalah suatu material yang tahan terhadap fenomena korosi. Namun bila lingkungan sekitar beton tersebut sudah tercemar atau banyak memiliki ion-ion korosif dan di tubuh beton tersebut terdapat cacat maka dapat mengakibatkan korosi pada tulangan beton yang akan mengakibatkan kerusakan pada beton tersebut. Mahalnya perbaikan struktur yang telah rusak akibat proses korosi memacu banyak orang maupun perusahaan untuk mencari solusi pencegahannya dengan biaya yang relatif murah. Salah satunya adalah penggunaan inhibitor. Inhibitor adalah suatu zat kimia yang ditambahkan kedalam campuran beton yang dapat memperlambat laju korosi pada tulangan beton. Inhibitor yang akan digunakan dalam penelitian ini adalah inhibitor korosi kalsium nitrit. Tujuan dari penelitian ini adalah untuk meneliti sejauh mana pengaruh kalsium nitrit dalam mengurangi laju korosi dan pengaruh terhadap karakteristik betonnya. Korosi adalah fenomena alam yang merugikan dan susah untuk dihindari. Korosi terjadi akibat adanya air dan oksigen. Korosi umumnya menyerang material-material yang bersifat logam, lalu menguraikan unsur-unsur pembentuknya dan selanjutnya logam tersebut akan hancur. Kalsium nitrit (Ca(NO2)2) adalah salah satu jenis inhibitor korosi. Sifatnya yang basa diharapkan dapat meninggikan alkalinitas dalam lingkungan beton dan menahan laju serangan ion-ion korosif yang bersifat asam yang dapat merusak tulangan. Tahap-tahap dalam melakukan penelitian mi dimulai dengan membuat sampel beton berbentuk kubus dengan tulangan ukuran 10,5 x 10,5 x 10,5 cm_ dan kubus tanpa tulangan ukuran 15 x 15 x 15 cm_ yang telah dicampurkan inhibitor Ca(NO2)2 didalamnya. Setelah itu direndam dalam lingkungan asam (pH-3) dan normal (pH-7). Lalu kemudian dilakukan uji kuat tekan dengan cara memberi beban pada beton sampel hingga beton tersebut retak, dalam hal ini di uji oleh mesin tes kuat tekan. Pengujian kuat tekan dilakukan ketika beton sampel berumur 28 hari dan 90 hari. Pengujian selanjutnya adalah uji korosi dengan metode immersion. Laju korosi dapat diketahui dengan mengambil data berupa selisih berat awal dengan berat akhir dari sampel tulangan. Tujuan dari uji kuat tekan dan uji korosi ini untuk mengetahui pengaruh Ca(NO2)2 dalam mengurangi laju korosi serta pengaruhnya terhadap karakteristik beton tersebut. Hasil yang didapat berdasarkan uji kuat tekan beton adalah, untuk kuat tekan di lingkungan normal (pH-7) pada hari ke 28 beton sampel dengan konsentrasi inhibitor 130 ppm = 428 kg/cm_, 160 ppm =417 kg/cm_, 190 ppm = 402 kg/cm_ dan untuk beton standar kuat tekannya sebesar 417 kg/cm_ sedangkan pada hari ke 90 beton sampel dengan konsentrasi inhibitor 130 ppm = 457 kg/cm_, 160 ppm = 496 kg/cm_, 190 ppm = 447 kg/cm_ dan untuk beton standar kuat tekannya sebesar 482 kg/cm_. Untuk uji kuat tekan di lingkungan asam (pH-3) pada hari ke-28 beton sampel dengan konsentrasi inhibitor 130 ppm =415 kg/cm_, 160 ppm = 422 kg/cm_, 190 ppm = 378 kg/cm_ dan kuat tekan untuk beton standamya sebesar 389 kg/cm_, sedangkan untuk uji kuat tekan pada hari ke-90 beton sampel dengan konsentrasi inhibitor 130 ppm = 498 kg/cm_, 160 ppm = 506 kg/cm_, 190 ppm = 475 kg/cm_ dan kuat tekan beton standamya sebesar 370 kg/cm_. Berdasarkan uji korosi di lingkungan asam (pH-3) hasil yang didapat adalah, untuk beton sampel dengan konsentrasi inhibitor 130 ppm = 0,117 mpy, 160 ppm = 0,194 mpy, 190 ppm =0,13 dan untuk beton standar =0,17 mpy. Hasil uji korosi di lingkungan normal (pH-7) adalah, untuk beton sampel dengan konsentrasi inhibitor 130 ppm = 0.06 mpy, 160 ppm = 0,035 mpy, 190 ppm = 0,032 dan untuk beton standar 0,089 mpy. Sehingga dapat disimpulkan bahwa penambahan Ca(NO2)2 pada konsentrasi yang efektif ke dalam beton bertulang dapat menaikkan kuat tekan beton tersebut sekaligus dapat menurunkan laju korosi pada tulangan beton tersebut. Konsentrasi Ca(NO2)2 130 ppm adalah konsentrasi yang paling efektif dalam menurunkan laju korosi serta menaikkan kuat tekan di dalam lingkungan asam (pH-3). Konsentrasi ini dapat menurunkan laju korosi sebesar 31,28% dan menaikkan kuat tekan sebesar 34,59%. Konsentrasi Ca(NO2)2 160 ppm adalah konsentrasi yang paling efektif dalam menurunkan laju korosi serta menaikkan kuat tekan di dalam lingkungan normal (pH-7). Konsentrasi ini dapat menurunkan laju korosi sebesar 60,77% dan menaikkan kuat tekan sebesar 27,66%.

Basically, concrete is an anti-corrosion materials. However, if the surrounding is contaminated or consists a great amount of corrosive ions and there is a crack on the concrete, this may cause corrosion on the concrete's reinforcement that will eventually create a damage on the concrete. The restoration on structure of the damage caused by corrosion cost a big amount of money. It led people and companies to find a way of prevention as the solutions with relatively economical cost. One of the solutions is the usage of inhibitor. Inhibitor is a chemical which is added into the mixture of concrete that will decelerate corrosion on the concrete's reinforcement. Inhibitor which will be applied in this research is calcium nitrite. The purpose of this research are to study the effect of calcium nitrite in decelerating corrosion and the effect on the characteristic of the concrete. Corrosion is a inevitable destructive natural phenomenon. Corrosion happen because of water and oxygen. Corrosion usually attacks metallic materials which will corrode the formative element that finally damage the concrete. Calcium nitrite (Ca(NO2)2) is one of the corrosion inhibitor. Its least-acid condition is expected to raise the alkalinity in the sorrounding of the concrete and restrain the attack of corrosive acid ions that will damage the reinforcement. There are a few phases in this research. The first phase is started by having concrete samples. These samples are shaped in square with the size of the frame 10,5 x 10,5 x 10,5 cm_ and square without frame with the size of 15 x 15 x 15 cm³3 which has been added with Ca(NO2) as the inhibitor in it. These samples are doused in acid with the acidic setting (pH-3) and normal setting (pH-7). The next step is to have a test on the pressure strength by giving burden on the concrete samples until it creates fractured. This test is done using pressure strength machine. This test can be applied when the samples are 28 days old and 90 days old. The next test is corrosion test with the immersion method. The acceleration of the corrosion can be identified from the data which is taken by from difference between the initial measurement and the last measurement of the frame samples. The purpose of this test are knowing the effect of Ca(NO)2 in decelerating the corrosion and the effect on the characteristic of the concrete. The outcome of the test is : the normal setting (pH-7) on the 28th day, concrete samples with the inhibitor concentration of 130 ppm = 428 kg/cm_, 160 ppm =417 kg/cm_, 190 ppm = 402 kg/cm_, the standard concrete is having the pressure strength of 417 kg/cm_ meanwhile on the 90th day concrete samples with the inhibitor concentration of 130 ppm = 457 kg/cm_, 160 ppm = 496kg/cm_, 190 ppm = 447 kg/cm_, the standard concrete is 482 kg/cm_. The pressure strength in the acidic setting (pH-3) on the 28th day, concrete samples with inhibitor concentration of 130 ppm =415 kg/cm_, 160 ppm = 442 kg/cm_, 190 ppm = 378 kg/cm_, the standard concrete is having the pressure strength of 389 kg/cm_. The pressure strength of the 90th day, concrete samples with the inhibitor concentration of 130 ppm = 498 kg/cm_, 160 ppm = 506 kg/cm_, 190 ppm = 475 kg/cm_ the pressure strength of the standard concrete is 370 kg/cm_. The result from test on the acidic setting (pH-3) is the concrete samples inhibitor concentration of 130 ppm = 0,117 mpy, 160 ppm = 0,194 mpy, 190 ppm =0,13 mpy, the standard concrete is = 0,17 mpy. For the test on the normal setting (pH-7) is the concrete samples with the inhibitor concentration of 130 ppm = 0,06 mpy, 160 ppm = 0,035 mpy, 190 ppm = 0,032, the standard concrete is 0,089 mpy. The conclusion of this research is that the addition of Ca(NO2)2 on the effective concentration into reinforced concrete will raise the pressure on the concrete and decelarate the corrsion on the reinforcement. The concentration of Ca(NO2)2 130 ppm is the most effective concentration in decelerating the corrosion and raise the pressure strength in the acidic setting (pH-3). This concentration can decelerate the corrosion by 31,28 % and raise pressure strength by 34,59 %. Concentration ofCa(NO2)2 160 ppm is the most effective in decelerating in raising the pressure strength in normal setting (pH-7). This concentration can decelerate corrosion of 60,77 % and raise the pressure strength of 27,66%."
Depok: Fakultas Teknik Universitas Indonesia, 2003
S35456
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>