Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 7191 dokumen yang sesuai dengan query
cover
Befriko Saparindra Murdianto
"ABSTRACT
Subsurface models of lithology are often poorly constrained due to the lack of
dense well control. Although limited in vertical resolution, high-quality threedimensional
(3-D) seismic data usually provide valuable information regarding
the lateral variations of lithology. In this thesis, I will show how Bayesian
approach can be used to generate seismically constrained models of
lithology. Unlike cokriging-based simulation methods, this method does not
rely on a generalized linear regression model, which is inadequate when
combining discrete variables, such as lithology indicator; and continuous
variables, such as seismic attributes. This method uses a Bayesian updating
rule to construct a posterior probability distribution function of lithoclasses by
using a priori information from well data and the seismic likelihood to constrain
the 3-D geological scenarios produced by geostatistical technique, which is
then sampled sequentially at all points in space to generate a set of
realizations. The realizations define alternative, equiprobable lithologic
models. The methodology was applied to delineate productive reservoir zone
in Boonsville, Texas. To achieve better result in the Bayesian Sequential
Indicator Simulation, I used acoustic impedance obtained from a seismic
inversion process as the attribute to constrain the simulation. It is expected
that by using this attribute, the separation of the litho-class conditional
distribution will be well defined and at the same time minimizing the overlaps
between the two distributions. The lithology classification obtained from BSIS
is then integrated with the result of the seismic inversion to clearly delineate
the productive zone in the field."
2007
T21196
UI - Tesis Membership  Universitas Indonesia Library
cover
Carlin, Bradley P.
London: Taylor & Francis Group, 2009
519.542 CAR b
Buku Teks SO  Universitas Indonesia Library
cover
Setia Gunawan Wijaya
"Scan statistic merupakan suatu analisis untuk mendeteksi daerah yang merupakan kejadian luar biasa atau KLB (outbreak). Salah satu metode yang mendasari analisis scan statistic adalah metode Bayesian Scan Statistic. Metode ini menerapkan prinsip teorema bayesian, yaitu memanfaatkan informasi prior untuk menghasilkan informasi posterior yang dapat memperbaiki informasi prior. Metode Bayesian Scan Statistic memilih keadaan atau kondisi yang memiliki posterior probability yang terbesar sebagai daerah KLB-nya. Fungsi marginal likelihood dan prior probability merupakan dua komponen penting yang digunakan dalam metode ini untuk menghitung posterior probability untuk tiap-tiap daerah. Fungsi marginal likelihood didapat dari data historis dan modelnya merupakan gabungan antara distribusi poisson dan distribusi gamma. Sedangan untuk prior probability juga didapat dari data historis atau berdasarkan pada pengalaman seseorang. Metode bayesian scan statistic ini dapat digunakan jika terdapat data masa lalu. Kata kunci : bayesian scan statistic, bayesian cluster detection, prior probability, posterior probability. x + 54 hlm. ; gamb. ; lamp. ; tab. Bibliografi : 9 (1986-2006)"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2007
S27733
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farah Amalia
"Indonesia merupakan negara di dunia yang memiliki aktivitas seisimik yang tinggi. Jawa barat merupakan salah satu provinsi di Indonesia yang rawan terjadi gempa, karena di daerah Jawa Barat terdapat zona subduksi dan sesar geser. Kemunculan gempa berkekuatan besar dapat menyebabkan kerusakan dan menelan banyak korban jiwa. Oleh karena itu, ingin diketahui berapa probabilitas terjadinya gempa bumi berkekuatan besar di daerah Jawa Barat. Hal ini bertujuan untuk memprediksi kapan dan dimana gempa yang berkekuatan besar itu akan berpotensi besar terjadi. Salah satu metode statistika yang dapat digunakan untuk memecahkan masalah ini adalah pemodelan Bayesian. Penelitian ini menggunakan data gempa bumi di Jawa Barat pada tahun 1960-2009. Data tersebut berupa variabel lintang, bujur, kedalaman pusat gempa, dan kekuatan gempa. Variabel lintang, bujur, dan kedalaman pusat gempa digunakan untuk mengelompokkan titik-titik gempa menjadi wilayah-wilayah rawan gempa dengan menggunakan metode two step cluster. Selanjutnya, pemodelan bayesian dilakukan di setiap wilayah rawan gempa tersebut untuk memprediksi probabilitas kemunculan gempa berkekuatan besar di daerah ini. Ternyata wilayah yang memiliki potensi kemunculan gempa berkekuatan besar yang cukup tinggi adalah kabupaten Garut, Bandung, dan laut Indonesia."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bernardo, Jose M.
Chichester: John Wiley & Sons, 1994
519.542 BER b
Buku Teks SO  Universitas Indonesia Library
cover
Tatarinova, Tatiana
London: Imperial College Press, 2015
519.233 TAT n
Buku Teks SO  Universitas Indonesia Library
cover
Nafia Aryuna
"Tugas akhir ini membahas penaksiran parameter 0 (probabilitas sukses) pada m distribusi binmial, dimana ada keterkaitan antar parameter 0 pada masing-masing populasi. metode penaksiran yang digunakan adalah metode Bayes. pada metode ini, prosedur yang dilakukan meliputi transformasi parameter 0 ke bentuk logit yaitu a, penentuan prior dan likelihood, pembentukan posterior, modifikasi likelihood, hingga akhirnya diperoleh m taksiran dari a yang akan digunakan untuk menaksir 0 pada tiap populasi. hasil yang diperoleh diaplikasikan pada penaksiran proporsi jumlah perempuan di 10 kursus pada suatu lembaga"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27843
UI - Skripsi Open  Universitas Indonesia Library
cover
Margaretha
"Distribusi Exponentiated Exponential (EE) adalah pengembangan dari distribusi Exponential dengan cara menambahkan sebuah parameter bentuk alpha. Distribusi ini digunakan untuk mengatasi masalah ketidakfleksibilitas dari distribusi Exponential. Untuk melakukan inferensi mengenai permasalahan yang dimodelkan dengan distribusi EE, perlu dilakukan penaksiran parameter. Pada skripsi ini akan dibahas mengenai penaksiran parameter distribusi dari distribusi Exponentiated Exponential pada data tersensor kiri menggunakan metode Bayesian. Prosedur penaksiran meliputi penentuan distribusi prior yaitu digunakan distribusi prior konjugat, pembentukan fungsi likelihood dari data tersensor kiri, dan pembentukan distribusi posterior. Penaksir Bayes kemudian diperoleh dengan cara meminimumkan risiko posterior berdasarkan fungsi loss Squared Error Loss Function (SELF) dan Precautionary Loss Function (PLF). Kemudian setelah diperoleh perumusan penaksir Bayes, simulasi data dilakukan untuk membandingkan hasil taksiran parameter menggunakan fungsi loss SELF dan PLF yang dilihat dari nilai Mean Square Error (MSE) yang dihasilkan. Fungsi loss dikatakan lebih efektif digunakan dalam merumuskan penaksir Bayes apabila penaksir Bayes yang diperoleh menghasilkan nilai MSE yang lebih kecil. Berdasarkan hasil simulasi, fungsi loss PLF lebih efektif digunakan untuk alpha≤1, sedangkan fungsi loss SELF lebih efektif digunakan untuk alpha>1.

Exponentiated Exponential (EE) distribution is the development of Exponential Distribution by adding alpha as a shape parameter. This distribution can solve unflexibility issue in Exponential distribution. In order to make inferences about any cases modeled with EE distribution, parameter estimation is required. This thesis will discuss about parameter estimation of Exponentiated Exponential distribution for left censored data using Bayesian method. Parameter estimation procedure are selection of prior distribution which is conjugate prior, likelihood construction for left censored data, and then forming posterior distribution. Bayes estimator can be obtained by minimize posterior risk based on Squared Error Loss Function (SELF) and Precautionary Loss Function (PLF). After Bayes estimator is obtained, simulation is done to compare the results of Bayes estimator using SELF and PLF which are seen from the result of Mean Square Error (MSE). Loss function is said to be more effective to obtain Bayes estimator if the resulting Bayes estimator yield smaller MSE. Based on simulation, PLF more effective for alpha ≤ 1, while SELF more effective for alpha>1."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Berger, James O.
New York: Springer-Verlag, 1985
519.542 BER s
Buku Teks SO  Universitas Indonesia Library
cover
Siti Salma Hasanah
"ABSTRACT
Model hurdle adalah model alternatif untuk mengatasi penyebaran berlebihan (varians datanya adalah lebih tinggi dari nilai rata-rata) yang disebabkan oleh kelebihan nol. Model rintangan dapat memodelkan secara terpisah variabel respons yang memiliki nilai nol dan positif, melibatkan dua proses yang berbeda. Proses pertama adalah proses biner yang menentukan apakah variabel respon memiliki nilai nol atau nilai positif, dan dapat dimodelkan dengan biner model, menggunakan regresi logistik. Untuk variabel respons positif, kemudian lanjutkan ke proses kedua, yaitu proses yang hanya mengamati jumlah positif. Yang positif count dapat dimodelkan dengan model Zero-Truncated menggunakan regresi Poisson. Rintangan model juga dikenal sebagai model dua bagian. Estimasi parameter menggunakan Bayesian metode. Kombinasi informasi sebelumnya dengan informasi dari data yang diamati membentuk distribusi posterior yang digunakan untuk memperkirakan parameter. Distribusi posterior bentuk yang diperoleh tidak tertutup, sehingga diperlukan teknik komputasi, yaitu Markov Chain Monte Carlo (MCMC) dengan algoritma Gibbs Sampling. Metode ini diterapkan
ke data Parkinson untuk memodelkan frekuensi komplikasi motorik pada 300 Parkinsonpasien. Data tersebut digunakan dari Parkinson's Progressive Markers Initiative (PPMI, 2018). Hasil yang diperoleh adalah MDS-UPDRS (Movement Disorder Society-Unified Skala Peringkat Penyakit Parkinson) bagian 1, MDS-UPDRS bagian 2, dan MDS-UPDRS bagian 3 terkait secara signifikan MDS-UPDRS bagian 4 di kedua tahap.

ABSTRACT
The obstacle model is an alternative model for overcoming excessive spread (the data variant is higher than the average value) which is questioned by zero excess. The obstacle model can separately model response variables that have zero and positive values, involving two different processes. The first process is a binary process that determines whether the response variable has a zero value or a positive value, and can be modeled with a binary model, using logistic regression. For positive response variables, then proceed to the second process, which is a process that is only positive. The positive one calculated can be modeled with a Zero-Truncated model using Poisson regression. The Obstacle Model is also known as the two part model. Parameter estimation using the Bayesian method. The combination of previous information with information from data collected collects the distributions used for parameter estimation. The posterior distribution of the obtained form is not closed, computational techniques are needed, namely Markov Chain Monte Carlo (MCMC) with Gibbs Sampling algorithm. This method is applied to Parkinson's data to model the frequency of motor complications in 300 Parkinson's patients. The data is used from Parkinson's Progressive Markers Initiative (PPMI, 2018). The results obtained are MDS-UPDRS (Movement Disorder-Community Parkinson's Disease Assessment Scale) part 1, MDS-UPDRS part 2, and MDS-UPDRS part 3 which significantly related MDS-UPDRS part 4 in both glasses.
"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>