Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 113489 dokumen yang sesuai dengan query
cover
"Minyak adalah salah satu bahan galian bumi yang memiliki peranan penting dalam kehidupan manusia. Pada kasus eksplorasi sering kali ditemukan permasalahan seberapa banyak cadangan bahan tambang pada suatu lokasi. Untuk itu dilakukan penaksiran volume reservoir dari beberapa lokasi dengan menggunakan informasi yang diketahui dari titik lainnya. Penghitungan volume reservoir dilakukan dengan terlebih dahulu menaksir ketebalan dari reservoir. Ketebalan reservoir adalah jarak dari batuan reservoir sampai dengan lapisan penutup reservoir. Dalam menaksir ketebalan reservoir digunakan metode simple kriging. Metode simple kriging adalah metode kriging dengan asumsi bahwa mean dari populasi sudah diketahui dan nilainya konstan. Penaksiran bobot kriging pada tugas akhir ini menggunakan kovariogram isotropi. Penaksiran ketebalan reservoir dengan metode simple kriging menggunakan model kovariogram spherical. Informasi volume reservoir diharapkan dapat menbantu kegiatan eksplorasi minyak terutama dalam kebijakan pembuatan sumur minyak. "
Universitas Indonesia, 2007
S27676
UI - Skripsi Membership  Universitas Indonesia Library
cover
Khansa Ramadianti
"Penelitan ini membahas tentang heterogenitas pada material beton dan dampaknya terhadap sifat mekanisnya yang sering diabaikan dalam melakukan pemodelan beton. Penelitian ini berfokus pada efek dari variabilitas dan dimensi, khususnya dalam damage model dan retak pada beton. Pemodelan ini menggunakan software FE dan mengaplikasikan Mazars Damage Model. Untuk menghasilkan variabilitas kerusakan pada beton, digunakan generator random field yang disebut Turning Band Method (TBM). Beberapa sampel kubus beton polos berukuran 15 x 15 x 15 cm³, 20 x 20 x 20 cm³, dan beton bertulang dengan sampel pull-out 20 x 20 x 20 cm³ dimodelkan dengan uji tarik dengan memvariasikan ukuran mesh dan panjang korelasi untuk mengamati pola kerusakannya. Hasil pada sampel kubus beton polos menunjukkan bahwa ukuran mesh yang lebih kecil yaitu 1 cm menyebabkan distribusi retakan yang lebih bervariasi dibandingkan dengan ukuran mesh 2.5 cm. Selain itu, panjang korelasi yang lebih kecil menghasilkan penyebaran microcracks di semua sisi sampel beton, sedangkan panjang korelasi yang lebih besar retak terlokalisasi di bagian-bagian tertentu. Hasil pada beton bertulang dengan sampel pullout menunjukkan bahwa Random Field-Turning Band Method tidak berpengaruh secara signifikan untuk memprediksi pola retak dan kerusakan pada beton.

This study addresses the heterogeneity of concrete material and its impact on mechanical properties, which is often overlooked in concrete modeling. It focuses on the effects of variability and dimension, particularly in damage and concrete cracking modeling. This research applies concrete variability in a FE using Mazars Damage Model to govern the behavior law. To capture the variability of concrete damage, a random field generator called the Turning Band Method is used. Some plain concrete cube sample of 15 x 15 x 15 cm³, 20 x 20 x 20 cm³, and reinforced concrete of pull-out sample of 20 x 20 x 20 cm³ are modelled under tension test, varying the mesh size and length correlation to observe the damage response. The results in plain concrete cube samples show that a smaller mesh size of 1 cm leads to a more varied distribution of cracks compared to a mesh size of 2.5 cm. Moreover, a smaller correlation length causes the spread of microcracks on all sides of the concrete sample, whereas a larger correlation length localizes in certain areas. The results in reinforced concrete of pull-out sample show that the TBM has no significant effect to predict crack and damage response."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Esti Ramaditia Mulatsih
" ABSTRAK
Analisis cluster merupakan teknik multivariat yang digunakan untuk mengelompokkan objek berdasarkan karakteristik yang dimilikinya. Salah satu teknik dalam analisis cluster adalah metode Fuzzy K-Means lebih dikenal dengan Fuzzy C-Means , yang merupakan versi fuzzy dari metode K-Means clustering. Seperti pada metode K-Means, FCM juga sangat sensitif terhadap penentuan pusat-pusat awal cluster. Untuk mengatasi permasalahan tersebut, diusulkan modifikasi dari metode FCM dengan menggunakan metode sampling dengan probabilitas. Metode sampling digunakan untuk menaksir lokasi pusat-pusat awal cluster untuk digunakan ke dalam proses clustering. Dalam tugas akhir ini, metode sampling yang digunakan adalah simple random sampling dan ranked set sampling. Modifikasi dari metode FCM dengan menggunakan kedua metode sampling tersebut masing-masingnya disebut dengan SRS Fuzzy C-Means dan Ranked Fuzzy C-Means. Kedua metode tersebut kemudian diuji pada himpunan data pasien liver di India. Hasil eksperimen menunjukkan bahwa Ranked Fuzzy C-Means lebih efisien dibandingkan SRS Fuzzy C-Means dan FCM.
ABSTRACT Cluster analysis is a multivariate technique that is used to group objects based on characteristics. One technique in cluster analysis is a method Fuzzy C Means or better known as Fuzzy C Means , which is a fuzzy version of K Means clustering method. As the K Means method, FCM is also very sensitive to the determination of the initial cluster centers. To overcome these problems, the proposed modification of the FCM method using probability sampling methods. The sampling method is used to estimate the initial cluster centers to be used in the clustering process. In this thesis, the sampling method used was simple random sampling and ranked set sampling. Modifications of the FCM method using both the sampling method each being with SRS Fuzzy C Means and Ranked Fuzzy C Means. Both methods are then tested on a data set of liver patients in India. The experimental results showed that Ranked Fuzzy C Means is more efficient than SRS Fuzzy C Means and FCM."
Depok: Universitas Indonesia, 2017
S66638
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ayu Linda Pratiwi
"ABSTRACT
Elusive Population adalah populasi yang anggotanya sulit untuk dideteksi dan tidak mempunyai kerangka sampling yang lengkap dan jelas. Metode sampling yang khusus diperlukan untuk melakukan pengambilan sampel pada Elusive Population. Centre Sampling adalah salah satu metode pengambilan sampel yang dapat digunakan pada Elusive Population. Ide dari Centre Sampling ini adalah mengamati individu yang menjadi objek penelitian pada pusat berkumpulnya individu-individu tersebut atau yang disebut dengan pusat agregasi. Secara umum ada dua tahap pengambilan sampel pada Centre Sampling, yang pertama adalah memilih sebanyak m pusat agregasi dari M pusat yang sudah ditentukan. Kemudian yang kedua peneliti harus mengamati setiap individu yang ada di pusat yang terpilih. Centre Sampling mempunyai kondisi Inclusion Probability, dimana peluang setiap individu untuk dapat terplih menjadi anggota sampel berbeda-beda . Pada penulisan skripsi ini parameter populasi yang akan ditaksir menggunakan Centre Sampling adalah total populasi. Estimator yang akan digunakan untuk mencari taksiran total populasi adalah Horvitz ndash; Thompson Estimator yang diperkenalkan oleh Horvitz ndash; Thompson pada tahun 1952. Horvitz ndash; Thompson Estimator adalah penaksir yang tak bias untuk total populasi. Pada skripsi ini juga akan dicari taksiran variansi dari taksiran total populasi.

ABSTRACT
Exlusive Population is population which members are difficult to detect and does not have any complete and clear sampling frame. A particular sampling method is required to take samples from Elusive Population. Centre Sampling is one of the sampling method that can be used on Elusive Population. The idea of Centre Sampling is to observe individual who becomes an object of research in a centre where all individual gather, or called as a centre of aggregation. In general, there are two steps to take samples in Centre Sampling. First of all, choose as many as m of M centre of aggregation that have been listed. Then, researchers must observe every individual in the selected centre. Centre Sampling has an Inclusion Probability condition, which probability of every individual of being selected as a member of samples are different. In this undergraduate thesis, population parameter which will be estimated using Centre Sampling is total population. The estimator which will be used to find the estimated total population is Horvitz Thompson Estimator, introduced by Horvitz Thompson in 1952. Horvitz Thompson Estimator is an unbiased estimator for total population. This undergraduate thesis will also look for unbiased estimator of the variance for estimated total population. "
2017
S66061
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mayramadan Madya Putra
"Metode two stage adaptive cluster sampling (2S-ACS) sangat baik digunakan untuk mengambil sampel dimana elemen yang akan diteliti sangat jarang atau berkelompok. Pada 2S-ACS, pengambilan sampel diawali dengan membagi wilayah penelitian menjadi unit-unit primer. Masing-masing unit primer dibagi menjadi unit-unit sampling. Pada tahap pertama, dipilih beberapa unit primer secara SRS. Pada tahap kedua, dari masing-masing unit primer yang terpilih pada tahap pertama, diambil beberapa unit sampling sebagai sampel awal. Kemudian, dilakukan proses penambahan sampel pada masing-masing unit sampling yang terpilih pada sampel awal. Ada dua skema yang dapat digunakan untuk menambahkan sampel, yaitu skema overlapping dan skema nonoverlapping. Pada skema overlapping, proses penambahan sampel diperbolehkan melewati batas unit primer, sedangkan pada skema nonoverlapping tidak diperbolehkan melewati batas unit. Pada masing-masing skema akan digunakan taksiran Horvitz-Thompson dan taksiran Hansen-Hurwitz untuk menaksir mean dan total populasi. Taksiran yang diperoleh adalah taksiran yang tak bias. Pada tugas akhir ini akan diberikan contoh penerapan two stage adaptive cluster sampling dengan menggunakan skema overlapping dan skema nonoverlapping. Kata kunci : taksiran Horvitz-Thompson; taksiran Hansen-Hurwitz; two stage adaptive cluster sampling; unit primer; unit sampling. ix+106 hal.;lamp.;gamb.;tab.; Bibliografi : 10 (1967-2002)"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S27802
UI - Skripsi Open  Universitas Indonesia Library
cover
Irenna
"Berdasarkan statistik BNPB, Jawa Tengah menjadi Provinsi dengan bencana longsor terbanyak di Indonesia sepanjang tahun 2021–2023 sebanyak 1283 peristiwa, dengan 427 di antaranya terjadi di Kebumen. Pada Kampus Lapangan Geologi Karangsambung, Kab. Kebumen, Jawa Tengah sejumlah lahan telah ditimbun tanah untuk rencana pembangunan dengan longsoran rotasi yang pernah terjadi. Oleh karena itu, dilakukan identifikasi potensi longsor beserta geologinya di daerah Karangsambung pada area timbunan tanah baru. Penelitian ini melibatkan studi lapangan dengan metode geolistrik resistivitas dan data SPT untuk mengetahui kekuatan daya dukung tanah. Penelitian mencakup enam lintasan sepanjang 195–245 meter dengan spasi elektroda 5 meter dan konfigurasi Wenner-Schlumberger. Keluaran yang diperoleh berupa penampang resistivitas 2D yang dikorelasikan dengan data SPT, plan map 3D, serta model resistivitas 3D. Hasil penampang resistivitas 2D menunjukkan bahwa terdapat zona resistivitas tinggi 270–13.293 Ωm di daerah timur laut penelitian. Zona resistivitas tinggi ini merupakan rekahan batulempung selebar 5–13 meter di permukaan dengan ketebalan 10–15 meter yang di bawahnya merupakan intrusi batu andesit. Selain itu umumnya daerah penelitian terdiri atas lempung lanauan padat di permukaan dengan ketebalan 3–33 meter dan resistivitas 0,5–90 Ωm, serta lempung pasiran yang sangat padat di bawahnya dengan ketebalan lebih dari 15 meter dan resistivitas 0,01–30 Ωm. Berdasarkan hasil tersebut terdapat potensi longsor di timur laut daerah penelitian yang melewati lintasan LKR01, LKR02, dan LKR03, tepatnya pada zona resistivitas tinggi. Keberadaan potensi longsor ini diharapkan dapat menjadi acuan terkait pengawasan pembangunan di Kampus Lapangan Geologi Karangsambung.

Based on BNPB statistics, Central Java is the province with the most landslide disasters in Indonesia throughout 2021-2023 with 1283 events, 427 of which occurred in Kebumen. At the Karangsambung Geological Field Campus, Kebumen Regency, Central Java, a number of lands have been stockpiled for development plans with rotational landslides that have occurred. Therefore, an identification of landslide potential and its geology in Karangsambung area in the area of new landfill was conducted. This research involved field study using geo-electrical resistivity method and SPT data to determine the bearing capacity of the soil. The research included six passes along 195-245 meters with 5 meters electrode spacing and Wenner-Schlumberger configuration. The output is 2D resistivity cross section correlated with SPT data, 3D plan map, and 3D resistivity model. The 2D resistivity cross section results show that there is a high resistivity zone of 270-13,293 Ωm in the northeast area of the study. This high resistivity zone is a fractured claystone 5-13 meters wide at the surface with a thickness of 10-15 meters under which is an andesite intrusion. In addition, the study area generally consists of dense silt loam at the surface with a thickness of 3-33 meters and a resistivity of 0.5-90 Ωm, and very dense passive loam underneath with a thickness of more than 15 meters and a resistivity of 0.01-30 Ωm. Based on these results, there is a potential for landslides in the northeast of the research area that passes through the LKR01, LKR02, and LKR03 tracks, precisely in the high resistivity zone. The existence of this landslide potential is expected to be a reference related to development supervision in Karangsambung Geological Field Campus.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Dibahas metode Needleman-Wunsch untuk menentukan pemadanan barisan dengan jumlah bobot maksimum, bila diberikan dua barisan nukleotida dengan panjang berbeda pada DNA. Pemadanan barisan dengan jumlah bobot maksimum dapat digunakan untuk menentukan kemiripan dari dua barisan yang diberikan. "
Universitas Indonesia, 2006
S27619
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tiara Ayumi
"Tuberkulosis (TB) merupakan salah satu penyakit menular yang menyebabkan kematian di dunia. TB disebabkan oleh Mycobacterium tuberculosis dan umumnya menyerang paru-paru. Berbagai pendekatan matematika telah dilakukan dalam menganalisis penyebaran TB. Pada skripsi ini, dikonstruksi model matematika penyebaran TB dengan pendekatan sistem persamaan diferensial dimana populasi manusia dibagi menjadi empat kompartemen. Fakta penting yang dipertimbangkan dalam model ini adalah adanya manusia yang terinfeksi TB laten dan intervensi perawatan terpantau. Selanjutnya, model tersebut dikembangkan menjadi masalah kontrol optimal untuk memperoleh strategi intervensi yang optimal dalam mengendalikan sistem dinamik yang digambarkan oleh variabel state (manusia) dan variabel kontrol (intervensi perawatan terpantau). Masalah kontrol optimal dikonstruksi dengan menggunakan prinsip minimum Pontryagin. Kajian analitik meliputi analisis eksistensi dan kestabilan secara lokal dan global dari titik-titik keseimbangan model dan hubungannya dengan bilangan reproduksi dasar (R_0). Selanjutnya, simulasi numerik terhadap model dengan membuat berbagai skenario kontrol dan analisis efektivitas biaya untuk mengetahui strategi yang terbaik. Analisis efektivitas biaya pada skripsi ini menggunakan dua pendekatan, yaitu IAR (Infection Averted Ratio) dan ACER (Average Cost-Effectiveness Ratio). Dari hasil simulasi numerik, diperoleh bahwa skenario terbaik dalam upaya mereduksi kasus infeksi TB dengan biaya yang efektif adalah melakukan intervensi perawatan terpantau sejak awal infeksi dengan kontrol bergantung waktu.

Tuberculosis (TB) is one of the infectious diseases that causes death worldwide. TB is caused by Mycobacterium tuberculosis which commonly attacks the lungs. Various mathematical approaches have been used to analyze the spread of TB. In this thesis, the mathematical model of TB transmission is constructed using the approach of an ordinary differential equation system, where the human population is divided into four subpopulations. Important facts considered in the model are the existence of latent TB and monitored treatment intervention. Furthermore, the model was developed into an optimal control problem to obtain the optimal intervention strategy in controlling the dynamic system described by state variables (humans) and control variables (monitored treatment intervention). The optimal control problem is constructed by using Pontryagin minimum principle. Analytical study including an analysis of the existence of equilibrium points, local and global stability of the equilibrium points, and how they related to the basic reproduction number (R_0). Then, numerical simulations were carried out by making several control scenarios and cost-effectiveness analysis to find out the best strategy. Cost-effectiveness analysis in this thesis used two approaches, namely IAR (Infection Averted Ratio) and ACER (Average Cost-Effectiveness Ratio). From the results of the numerical simulation, the best strategy to reduce TB infection with effective cost is to do the monitored treatment in the early infection with time dependent control.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raven Ginola Imanuel
"Mata merupakan salah satu dari panca indra yang digunakan untuk melihat dan menjadi aset terpenting dalam hidup manusia. Salah satu bagian terpenting dari mata ialah kelopak mata di mana terdapat sebuah kelenjar yang disebut kelenjar meibom. Kelenjar ini berada pada lapisan air mata yang berguna untuk menyekresikan komponen minyak atau lipid dan berperan penting dalam memperlambat proses evaporasi yang menyebabkan terjaganya kelembapan pada mata. Kekurangan kelenjar meibom yang dikenal sebagai Disfungsi Kelenjar Meibom (DKM) merupakan penyebab utama dari penyakit mata kering. Karena proses diagnosis yang dikerjakan oleh tenaga medis terbilang subjektif, maka penelitian ini menggunakan pendekatan deep learning untuk melakukan klasifikasi pada tingkat keparahan dari DKM. Klasifikasi dilakukan dengan membagi tingkat keparahan atau kehilangan kelenjar meibom berdasarkan hasil meiboscore-nya menjadi 4 kelas, yaitu kelas 0 untuk meiboscore ≤ 25%, kelas 1 untuk 25% < meiboscore ≤ 50%, kelas 2 untuk 50% < meiboscore ≤ 75%, dan kelas 3 untuk meiboscore  > 75%. Metode deep learning yang digunakan adalah Convolutional Neural Network (CNN) dengan arsitektur AlexNet. Data yang digunakan pada penelitian ini adalah 139 citra meibography yang bersumber dari Rumah Sakit Ciptomangunkusumo (RSCM) Departemen Kirana dari 35 pasien mata kering yang sudah mengalami augmentasi dan segmentasi, sehingga data akhir yang digunakan yaitu sebanyak 417 citra segmentasi. Pada tahap pre-processing, dilakukan perhitungan meiboscore dengan bantuan software dan membaginya ke dalam 4 kelas sesuai dengan nilai meiboscore­-nya. Citra yang sudah dilabel ini kemudian dibagi menjadi 80% data training dan 20% data testing. Dari 80% data training, diambil 10% untuk dijadikan data validation, sehingga 417 data tersebut terbagi menjadi 299 data training, 84 data testing, serta 34 data validation. Training model dilakukan menggunakan arsitekur AlexNet dengan hyperparameter berupa epoch sebanyak 100, batch size 32, dan learning rate 0,0001. Pada arsitektur ini juga diterapkan fungsi optimasi yaitu Adam (Adaptive moment estimation) dan fungsi loss categorical cross entropy. Proses modelling dilakukan sebanyak 5 kali percobaan dan memperoleh nilai rata-rata akurasi training dan validation sebesar 99,59% dan 99,41% dan nilai dari loss training dan loss validation sebesar 0,1259 dan 0,0524. Sedangkan rata-rata kinerja testing model berhasil memperoleh akurasi testing sebesar 87,38%; testing loss sebesar 0,5151; dan Area Under Curve (AUC) sebesar 0,9715.

The eye is one of the five senses used to see and is the most important asset in human life. One of the most important parts of the eye is the eyelid where there is a gland called meibomian gland. This gland is located in the tear film which is useful for secreting oil or lipid components and plays an important role in slowing down the evaporation process which leads to maintaining moisture in the eye. Meibomian gland deficiency, known as Meibomian Gland Dysfunction (MGD), is a major cause of dry eye disease. Since the diagnosis process carried out by medical personnel is subjective, this study uses a deep learning approach to classify the severity of MGD. Classification is done by dividing the severity or loss of meibomian glands based on meiboscore results into 4 classes, namely class 0 for meiboscore ≤ 25%, class 1 for 25% < meiboscore ≤ 50%, class 2 for 50% < meiboscore ≤ 75%, and class 3 for meiboscore > 75%. The deep learning method used is Convolutional Neural Network (CNN) with AlexNet architecture. The data used in this study are 139 meibography images sourced from Ciptomangunkusumo Hospital (RSCM) Kirana Department from 35 dry eye patients that have undergone augmentation and segmentation, so that the final data used is 417 segmentation images. In the pre-processing stage, meiboscore was calculated with the help of software and divided into 4 classes according to the meiboscore value. The labeled images were then divided into 80% training data and 20% testing data. From 80% of the training data, 10% is taken to be used as validation data, so that the 417 data is divided into 299 training data, 84 testing data, and 34 validation data. The training model is carried out using the AlexNet architecture with hyperparameters in the form of epochs of 100, batch size 32, and learning rate 0,0001. In this architecture, the optimization function Adam (Adaptive moment estimation) and categorical cross entropy loss function are also applied. The modeling process was carried out 5 times and obtained an average training and validation accuracy value of 99,59% and 99,41% and the value of training loss and validation loss of 0,1259 and 0,0524. While the average performance of the testing model successfully obtained a testing accuracy of 87,38%; testing loss of 0,5151; and Area Under Curve (AUC) of 0,9715.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gamar Aseffa
"Model regresi data panel spasial error dinamis adalah model regresi data panel yang melibatkan lag dari variabel dependen dan komponen dependensi spasial error. Karena terdapat korelasi antara lag dari variabel dependen dan komponen error, estimasi dengan Ordinary Least Squares menjadi bias dan tidak konsisten. Oleh karena itu, dibutuhkan metode lain untuk menaksir parameter dalam model. Metode yang dapat digunakan adalah perluasan metode Arellano dan Bond yang mencakup metode instrumental variabel menggunakan variabel instrumen yang disarankan oleh Mutl (2006) dan prinsip Generalized Method of Moments (GMM). Kemudian ditambah dengan metode pendekatan Kapoor, Kelejian, dan Prucha (KKP) sehingga dihasilkan taksiran yang konsisten.

The dynamic spatial error panel data regression model is panel data regression model which involves lag of the dependent variable and error spatial dependence. Because there is correlation between the lag of the dependent variable and error components, the ordinary least squares estimator becomes biased and inconsistent. Therefore, we need another method to estimate parameters in the model. The method which can be used is the extended method of Arellano and Bond covering instrumental variable method using instrument variables suggested by Mutl (2006) and the principle of the Generalized Method of Moments (GMM). Then the method is coupled with the method of Kapoor, Kelejian, and Prucha (KKP) approach so that it produces consistent estimators."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S86
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>