Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 158731 dokumen yang sesuai dengan query
cover
Debby Noviana
"ABSTRAK Zeolit merupakan mineral alumina silikat yang mempunyai struktur berongga. Beberapa penggunaan zeolit adalah sebagai adsorben, penukar ion, katalis, penyangga katalis, dan penyaring molekul. Pemanfaatan zeolit alam sebagai penyangga katalis Ni dilakukan dengan cara aktivasi zeolit terlebih dahulu, yaitu aktivasi asam tanpa pemanasan (zeolit TP) dan aktivasi asam disertai pemanasan (zeolit P). Metode yang digunakan pada pembuatan katalis Ni adalah metode impregnasi basah. Variasi konsentrasi logam Ni yang diimpregnasikan adalah 0,25; 0,5; 0,75; 1,0; 1,25; 1,5 M. Katalis dikarakterisasi dengan AAS, XRD, FT-IR, BET dan uji keasaman katalis. Karakterisasi dengan AAS menunjukkan bahwa makin besar konsentrasi logam yang diimpregnasikan, kandungan Ni dalam katalis juga semakin besar. Karakterisasi dengan XRD dan FT-IR menunjukkan Ni telah berikatan dengan penyangga (zeolit). Analisa BET menunjukkan bahwa zeolit TP mempunyai luas permukaan lebih besar daripada zeolit P, tetapi diameter pori zeolit TP lebih kecil daripada zeolit P. Uji keasaman katalis menunjukkan adanya sisi asam Bronsted dan asam Lewis secara kualitatif. Uji katalitik dari katalis Ni/Zeolit pada reaksi hidrogenasi benzena, didapat bahwa semakin besar konsentrasi Ni dalam katalis Ni/Zeolit TP, konversi benzena menjadi sikloheksana semakin sedikit. Sedangkan pada katalis Ni/Zeolit P semakin besar konsentrasi Ni dalam katalis, konversi benzena menjadi sikloheksana semakin banyak. Kata kunci : hidrogenasi benzena, karakterisasi katalis, katalis Ni/Zeolit, Zeolit Xii + 107 hlm.; gbr.; lamp.; tab Bibliografi : 28 (1978-2005)"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2005
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Djeanisa Firdaus
"Pada penelitian ini telah dilakukan uji ketahanan sampel urin terhadap waktu dan kondisi penyimpanan dalam penentuan kadar senyawa asam trans, trans-mukonat, asam S-fenil merkapturat, asam hippurat, asam 2-metil hippurat, asam 3-metil hippurat, serta asam 4-metil hippurat menggunakan instrument HPLC. Setelah sampel urin dan standar melalui proses ekstraksi, dilakukan uji pemisahan dan analisis dengan instrument HPLC menggunakan detektor UV. Metode yang digunakan memenuhi beberapa kriteria validasi dalam hal linearitas, presisi, batas deteksi, batas kuantifikasi, serta persen perolehan kembali. Diperoleh nilai R2 rentang 0.85 ppm 175 ppm. Nilai presisi yang dinyatakan dengan %RSD berada pada 0,331 % - 0.888 %. Batas deteksi dari lima analit berkisar antara 0,255 ppm 􀂱 6.327 ppm dan batas kuantifikasi dari lima analit berkisar antara 0.849 ppm 􀂱 21.091 ppm. Persen perolehan kembali mampu mencapai kisaran 94.37%-100.46%. Kemudian metode ini digunakan dalam menganalisis sampel urin terhadap waktu dan kondisi penyimpanan dalam penentuan kadar senyawa asam trans, trans-mukonat, asam s-fenil merkapturat, asam hippurat, asam 2-metil hippurat, asam 3-metil hippurat, dan asam 4 -metil hippurat. Didapat kondisi penyimpanan yang paling baik adalah dengan penambahan pengawet timol dan disimpan pada suhu 50C. Hasil analisis senyawa metabolit BTX pada urin dengan kondisi penyimpanan tersebut menunjukkan kadar yang stabil selama kurang lebih 30 hari.

In this research, the resistance of urine sample against storage time and condition for the determination of compounds tt-MA, SPMA, HA, 2-MHA, 3-MHA, and 4-MHA by High Performance Liquid Chromatography has been investigated. After urine samples and standards have been extracted, they were then analyzed by HPLC instrument using a UV detector. The method used had met several criteria in terms of validation of linearity, precision, detection limit, quantification limit, and percent recovery. The result showed that the value of R2 exceeded 0.996 with range of 0.85 ppm - 175 ppm. The value of precision showed by % RSD is at 0.331% - 0.888%. Limit of detection of five analytes ranged from 0.255 ppm 6.327 ppm and limit of quantification of five analytes ranged from 0.849 ppm-21.091 ppm. Percent recovery has been to reach a range of 94.37% - 100.46%. This method then used to analyze the resistance of urine sample against storage time and condition for the determination of compound trans, transmuconic acid, s-phenyl mercapturic acid, hippuric acid, 2-methylhippuric acid, 3-methylhippuric acid, and 4-methylhippuric acid. We can conclude that the best storage conditions are at 50C with addition of thymol as preservatives. The analysis results of BTX metabolites in urine with this storage conditions showed a stable amount for approximately 30 days."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S46905
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
cover
Tresye Utari
"Alumina (A12O3) memiliki kemampuan yang rendah untuk mengadsorpsi senyawa organik non polar. Permukaan Y-alumina dapat dimodifikasi dengan surfaktan Sodium Dodesyl Sulfate (SDS) untuk membentuk admisel dan aplikasikannya sebagai penyerap benzena. y-Alumina disintesis dan campuran kaolin dan (NH4SC4)SO 1:4. Nilai CAC (Critical Admicelle Concentration), CMC (Critical Micelle Concentration), konsentrasi admisel optimum dan pH optimum ditentukan dari kurva isoterm adsorpsi SDS pada alumina. Karakterisasi y-alumina dilakukan dengan metoda analisis XRD, pembentukan admisel dengan metode BET dan FT-IR. Nilai CAC dan CMC terjadi pada konsentrasi SDS 3 mM dan 6 mM, dengan pH optimum 3. Uji Adsorpsi benzena mengikuti isoterm adsorpsi Freundlich. Peningkatan koefisien partisi benzena menunjukkan, bahwa benzena teradsolubilisasi pada daerah core dalam admisel. Benzena teradsolubilisasi pada admisel sebesar 88,13 %."
2005
SAIN-10-3-2005-8
Artikel Jurnal  Universitas Indonesia Library
cover
Rizkia Ichty Garniani
"[;Bentonit adalah senyawa yang memiliki struktur berlapis-lapis yang mengandung monmorilonit. Bentonit diaplikasikan sebagai absorben dan katalis. Penggunaan katalis penyangga Ni yang disisipkan pada lapisan bentonit dilakukan dengan pengecilan ukuran partikel Ni menjadi nanopartikel dengan menggunakan reduktor NaBH4 yang menjadikan molekul Ni2+ menjadi Nio. Karena nanopartikel Ni tanpa pilarisasi tidak stabil maka dilakukan pilarisasi pada lapisan-lapisan suatu senyawa alumina silika, yaitu pilarisasi pada bentonit alam Cikajang, Bogor sehingga terbentuklah nanopartikel Ni-bentonit yang lebih stabil. Katalis nanopartikel Ni-bentonit ini merupakan aplikasi dari bentonit yang diaplikasikan pada reaksi hidrogenasi pada senyawa benzena, dimana senyawa yang diklasifikasikan dalam senyawa berbahaya, reaksi hidrogenasi biasanya menggunakan katalis logam atau logam yang tersisipkan kedalam bentonit ataupun zeolit sebagai template, permukaan Ni-bentonit akan terlapisi hidrogen sehingga dapat diaplikasikan sebagai katalis. Reaksi hidrogenasi dilakukan dengan mengalirkan gas H2 pada suhu optimum pada reaktor unggun tetap (Atmospheric Fixed Bed Reactor) dengan 300°C dengan laju alir gas 40 mL/menit sehingga terbentuk katalis penyangga Ni-bentonit. Reaksi hidrogenase akan memutus ikatan rangkap pada benzena sehingga terbentuk senyawa sikloheksana yang merupakan senyawa kimia yang lebih aman juga akan berdampak lebih baik bagi lingkungan. Hasil pengujian menggunakan GC dapat disimpulkan semakin tinggi konsentrasi Ni yang dipilarisasi kedalam bentonit maka semakin banyak persen kadar sikloheksana.

Bentonite is a layered structure containing montmorillonite compounds. The use of bentonite and applied as a buffer, catalyst and absorbent catalyst molecules. The use of catalyst Ni-Bentonite with a diminution of the size of particles Ni be nanoparticle by reductant NaBH4 who made molecular Ni 2+ be Ni. Nanoparticle Ni without pillarization unstable then done pillarization in layers of a compound of alumina silica, so in this research pillarization in layers of bentonite from Cikajang, Bogor and can made nanoparticle Ni-bentonite so than more stable. Catalyst nanoparticle Ni-bentonite is one of the application of bentonite to be applied on bezene compounds on hydrgenation reaction, when the compound is classified in the harmful compounds, hydrogenation reaction ussually use metal catalyst or metal which insert into the bentonite or zeolite as a template, the surface of Ni-bentonite and hydrogen will paved so it can be applied as catalyst for hydrogenation reaction. Hydrogenation reactions performed with H2 gas flow at optimum temperature in Atmospheric Fix Bed Reactor with 300°C with gas flow rate 40 mL/minute so formed Ni-bentonite for buffer catalyst. This will used fordisconnect the hydrogenation reaction of double bond in benzene is formed so that the compound is a chemical compound of cyclohexene safer will also have an impact is better for the environment. The test result using GC can be concluded the higher the concentration of Ni pillarization into the bentonite the more percent levels cyclohexane formed., Bentonit adalah senyawa yang memiliki struktur berlapis-lapis yang mengandung monmorilonit. Bentonit diaplikasikan sebagai absorben dan katalis. Penggunaan katalis penyangga Ni yang disisipkan pada lapisan bentonit dilakukan dengan pengecilan ukuran partikel Ni menjadi nanopartikel dengan menggunakan reduktor NaBH4 yang menjadikan molekul Ni2+ menjadi Nio. Karena nanopartikel Ni tanpa pilarisasi tidak stabil maka dilakukan pilarisasi pada lapisan-lapisan suatu senyawa alumina silika, yaitu pilarisasi pada bentonit alam Cikajang, Bogor sehingga terbentuklah nanopartikel Ni-bentonit yang lebih stabil. Katalis nanopartikel Ni-bentonit ini merupakan aplikasi dari bentonit yang diaplikasikan pada reaksi hidrogenasi pada senyawa benzena, dimana senyawa yang diklasifikasikan dalam senyawa berbahaya, reaksi hidrogenasi biasanya menggunakan katalis logam atau logam yang tersisipkan kedalam bentonit ataupun zeolit sebagai template, permukaan Ni-bentonit akan terlapisi hidrogen sehingga dapat diaplikasikan sebagai katalis. Reaksi hidrogenasi dilakukan dengan mengalirkan gas H2 pada suhu optimum pada reaktor unggun tetap (Atmospheric Fixed Bed Reactor) dengan 300°C dengan laju alir gas 40 mL/menit sehingga terbentuk katalis penyangga Ni-bentonit. Reaksi hidrogenase akan memutus ikatan rangkap pada benzena sehingga terbentuk senyawa sikloheksana yang merupakan senyawa kimia yang lebih aman juga akan berdampak lebih baik bagi lingkungan. Hasil pengujian menggunakan GC dapat disimpulkan semakin tinggi konsentrasi Ni yang dipilarisasi kedalam bentonit maka semakin banyak persen kadar sikloheksana.

Bentonite is a layered structure containing montmorillonite compounds. The use of bentonite and applied as a buffer, catalyst and absorbent catalyst molecules. The use of catalyst Ni-Bentonite with a diminution of the size of particles Ni be nanoparticle by reductant NaBH4 who made molecular Ni 2+ be Ni. Nanoparticle Ni without pillarization unstable then done pillarization in layers of a compound of alumina silica, so in this research pillarization in layers of bentonite from Cikajang, Bogor and can made nanoparticle Ni-bentonite so than more stable. Catalyst nanoparticle Ni-bentonite is one of the application of bentonite to be applied on bezene compounds on hydrgenation reaction, when the compound is classified in the harmful compounds, hydrogenation reaction ussually use metal catalyst or metal which insert into the bentonite or zeolite as a template, the surface of Ni-bentonite and hydrogen will paved so it can be applied as catalyst for hydrogenation reaction. Hydrogenation reactions performed with H2 gas flow at optimum temperature in Atmospheric Fix Bed Reactor with 300°C with gas flow rate 40 mL/minute so formed Ni-bentonite for buffer catalyst. This will used fordisconnect the hydrogenation reaction of double bond in benzene is formed so that the compound is a chemical compound of cyclohexene safer will also have an impact is better for the environment. The test result using GC can be concluded the higher the concentration of Ni pillarization into the bentonite the more percent levels cyclohexane formed.]"
Universitas Indonesia, 2014
S58083
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muliadi Ramli
"Katalis nikel (20% dan 10%) yang disangga pada 1-alumina telah dapar diprepamsi dengan metode impregnasi dan presipitasi. Luas permukaan karalis Ni/y-A1203 hasil preparasi dengan metode impregnasi setelah direduksi pada 400 °C naman 120 m2/g untuk 20%-Ni dm 129 mz/g untuk10%-Ni. Dedangkan hasil prcparasi mctodc pfcnpimi adalah 127 mz/g untuk 2o%~Ni dan 129 mz/g untuk 10% Ni. Setelah reduksi ditemukxm adanya punmk nike) yang tajam untuk setiap katalis yang mmgandlmg 20%-nikel, sedangkan llllfllk 10%-Ni puncak nike! yang terbenlnk tidak tajam. Katalis Ni/1-A1203 hnsil preparasi tersebllt telah diuji aktivitas tahadap reaksi hidrogenasi benzena. Hasil uji aktivitas menunjuldum bahwa aktivitas kntalis Ni/1-A1203 yang diprepamsi dengan metode impnegnasi lebih baik dalipada metodc presipitasi.

Study of catalyst nickel (20 % and 10%) support on 1-alumina was made by impregnation and precipitation method Reduction of the catalysts of Ni/7-A|2O3 at 400 °C produced by impregnation has a specific surface area of 120 m2/g for 2o%Ni and 129 mz/gfor 10%-Ni. which me catalysts produced by precipitation has a specific surface ar of 127 ml/g for 20%-Ni and 129 m2/gfor 10%-Ni. XRD spectra of 20%-Ni contented catalysts are sharpest than 10% Ni contented catalysts at nickel peak. The catalyst Ni/y-A1103 are succeeded to catalysis reaction hydrogenation of benzene. The result of catalysts activity testing shows that catalyst Ni/y-A1203 prepared by impregnation method is better than precipitation."
Depok: Universitas Indonesia, 2002
T6371
UI - Tesis Membership  Universitas Indonesia Library
cover
Muliadi Ramli
Depok: Universitas Indonesia, 2002
T40188
UI - Tesis Membership  Universitas Indonesia Library
cover
cover
Rika Simon
"ABSTRAK
Padatan superbasa dibuat dari reaksi padatan Y-A12O3 dengan padatan
NaOH dan logam Na. Y-AI2O3 yang digunakan disintesis dari reaksi larutan
AI(N03)3 dengan larutan NH4OH. Gel boehmit yang terbentuk dilakukan
penuaan (aging) secara hidrotermal menggunakan autoclave kemudian
dikalsinasi. Y-Al203ini dianalisis dengan difraktometer sinar-x. Y-AI2O3 yang
direaksikan dengan NaOH akan membentuk |3-natrium aluminat dan dengan
penambahan logam Na akan menyebabkan terisinya tempat kosong tersebut,
kemudian logam Na akan terionisasi, dan mentransfer elektron ke atom
oksigen tetangganya. Atom oksigen inilah yang merupakan pusat superbasa.
Padatan Y-Al203/Na0H/Na yang telah disintesis diuji sifat katalitiknya untuk
reaksi isomerisasi eugenol, dengan memperhatikan variasi faktor reaksi
seperti suhu, waktu, dan berat katalis. Dari semua reaksi isomerisasi yang
dilakukan, tidak ada yang menunjukan terbentuknya produk isomerisasi. Hal
ini mungkin disebabkan karena kondisi reaksi yang belum tepat dan/atau
karena padatan superbasa yang dihasilkan tidak dapat bertindak sebagai
katalis pada reaksi isomerisasi eugenol.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2004
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>