Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 40621 dokumen yang sesuai dengan query
cover
Diamond, Solomon
New York N.Y.: Basic Books, 1959
311.2 DIA i
Buku Teks SO  Universitas Indonesia Library
cover
Hamburg, Morris
New York: Harcourt Brace Jovanovich, Pub., 1991
519.535 HAM s
Buku Teks SO  Universitas Indonesia Library
cover
Johnson, Richard A.
America: Pearson Education International, 2007
519.5 JOH a
Buku Teks SO  Universitas Indonesia Library
cover
Dixon, Wilfrid Joseph
New York, N.Y.: McGraw-Hill, 1969
311 DIX i
Buku Teks SO  Universitas Indonesia Library
cover
"Statistical game dapat digambarkan sebagai suatu permainan antara dua pemain, dimana pemain I adalah nature dan pemain II adalah pembuat keputusan atau agen. Strategi dari nature adalah state of nature dan strategi dari agen adalah tindakan yang dipilih oleh agen. Dalam statistical game, untuk menduga state of nature, agen dapat mencari informasi sampel yang berhubungan dengan state of nature. Untuk memilih tindakan berdasarkan pada informasi sampel, diperlukan suatu aturan keputusan (decision rule) sedemikian sehingga untuk setiap hasil yang mungkin, aturan tersebut menentukan tindakan yang harus dipilih. Terdapat dua aturan keputusan, yaitu nonrandomized decision rule dan randomized decision rule. Dalam skripsi ini, aturan keputusan yang akan digunakan adalah randomized decison rule. Tugas agen adalah menentukan aturan keputusan yang optimal, yang sedapat mungkin akan memiliki resiko yang sangat kecil. Untuk menentukan aturan keputusan yang optimal, digunakan prinsip minimax. Dengan prinsip minimax, akan dicari resiko maksimum dari semua aturan keputusan untuk setiap state of nature, dan kemudian dipilih aturan keputusan yang meminimumkan resiko maksimum ini. Metode yang digunakan pada skripsi ini untuk menentukan aturan keputusan berdasarkan prinsip minimax adalah testing simple hypothesis. "
Universitas Indonesia, 2006
S27632
UI - Skripsi Membership  Universitas Indonesia Library
cover
London: Sage Publications, Toppan Publishing, 1993
R 519.536 REG
Buku Referensi  Universitas Indonesia Library
cover
M. Rasyid Rabbani
"Fraud atau kecurangan merupakan salah satu permasalahan yang masih dihadapi oleh industri asuransi dan masih memberikan kerugian yang sangat besar bagi industri ini. Biaya yang dikeluarkan pun untuk mengatasi permasalahan ini masih cukup besar, untuk itu dikembangkanlah sebuah model machine learning untuk membantu pencegahan terjadinya fraud pada asuransi. Salah satu model yang sedang sangat berkembang adalah model Imbalance-XGBoost, penelitian ini dilakukan untuk meninjau kemampuan model Imbalance-XGBoost dalam mendeteksi fraud sebagai langkah pencegahan fraud pada asuransi. Penelitian ini berhasil mendapati bahwa Imbalance-XGBoost memiliki performa yang lebih baik jika dibandingkan dengan model dasarnya yaitu XGBoost tanpa penanganan kelas tidak seimbang.

Fraud or dishonesty is one of the persistent challenges faced by the insurance industry and continues to result in significant losses for the industry. The costs incurred to address this issue are also quite substantial. Therefore, a machine learning model has been developed to assist in preventing insurance fraud. One of the models that is currently gaining traction is the Imbalance-XGBoost model. This research was conducted to assess the ability of the Imbalance-XGBoost model in detecting fraud as a preventive measure in insurance. The study found that Imbalance-XGBoost performs better compared to its base model, XGBoost, which does not handle imbalanced classes.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yudhistira Jinawi Agung
"Pendeteksian topik adalah suatu proses untuk mendapatkan pokok bahasan atau topik pada suatu dokumen teks. Pada data yang besar, pendeteksian topik dapat dilakukan dengan lebih efisien menggunakan metode machine learning. Clustering merupakan salah satu metode machine learning yang bertujuan untuk mengelompokkan data yang memiliki karakteristik serupa ke dalam suatu kelompok/cluster. Beberapa contoh metode clustering adalah K-Means, Fuzzy C-Means (FCM), dan Eigenspace-Based Fuzzy C-Means (EFCM). Metode clustering hanya memproses data numerik, oleh sebab itu diperlukan metode representasi teks. Metode representasi teks yang umum digunakan sebelumnya adalah Bag of Words (BoW) dan Term-Frequency Inversed Document Frequency (TFIDF). Namun, metode BoW dan TFIDF kurang baik dalam merepresentasikan teks secara kontekstual. Pada tahun 2018 metode representasi teks yang baru ditemukan yaitu metode Bidirectional Encoder Representation from Transformers (BERT). Model BERT dapat merepresentasikan teks secara kontekstual dan menghasilkan representasi teks berdimensi tinggi. EFCM merupakan teknik clustering yang menggunakan kombinasi teknik reduksi dimensi Truncated Singular Value Decomposition (TSVD) dengan teknik clustering FCM. Pada tahun 2022 terdapat penelitian yang mengombinasikan BERT dan EFCM untuk pendeteksian topik. Pada model kombinasi BERT dan EFCM terdapat beberapa nilai parameter yang dapat diatur, antara lain adalah pemilihan lapisan encoder BERT, dimensi EFCM, dan derajat fuzziness. Penelitian ini berfokus pada analisis sensitivitas parameter untuk melihat pengaruh dari nilai parameter terhadap kinerja model EFCM berbasis BERT untuk pendeteksian topik. Analisis sensitivitas parameter menggunakan metode Sobol untuk menentukan parameter yang tidak sensitif dan yang paling sensitif. Kinerja model dievaluasi menggunakan metrik evaluasi topic coherence, topic diversity, dan topic quality. Hasil penelitian menunjukkan bahwa parameter lapisan encoder, dimensi EFCM, dan derajat fuzziness sensitif terhadap kinerja model. Selain itu, diperoleh model optimal pada tiga dataset menggunakan parameter tuning metode grid search. Penerapan parameter tuning dapat meningkatkan performa model pada ketiga dataset berdasarkan nilai topic quality.

Topic detection is a process to get the subject matter or topic in a text document. In large data, topic detection can be done more efficiently using machine learning methods. Clustering is a machine learning method aiming to group data with similar characteristics into a group/cluster. Some examples of clustering methods are K-Means, Fuzzy C-Means (FCM), and Eigenspace-Based Fuzzy C-Means (EFCM). The clustering method only processes numeric data; therefore, a text representation method is needed. Previously used text representation methods were Bag of Words (BoW) and Term-Frequency Inverse Document Frequency (TFIDF). However, the BoW and TFIDF methods are not good at representing text contextually. In 2018 a new text representation method was discovered, namely the Bidirectional Encoder Representation from Transformers (BERT) method. The BERT model can contextually represent text and produce high-dimensional text representations. EFCM is a clustering technique that combines the Truncated Singular Value Decomposition (TSVD) dimension reduction technique with the FCM clustering technique. In 2022 there will be research that combines BERT and EFCM for topic detection. In the BERT and EFCM combination model, there are several parameter values that can be set, including the selection of the BERT encoder layer, EFCM dimensions, and the degree of fuzziness. This study focuses on parameter sensitivity analysis to see the effect of parameter values on the performance of the BERT-based EFCM model for topic detection. Parameter sensitivity analysis uses the Sobol method to determine which parameters are insensitive and the most sensitive. Model performance was evaluated using evaluation metrics of topic coherence, topic diversity, and topic quality. The results showed that the parameters of the encoder layer, EFCM dimensions, and degree of fuzziness were sensitive to model performance. In addition, the optimal model was obtained for three datasets using the grid search method parameter tuning. Parameter tuning can improve the model performance on the three datasets based on topic quality values.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nadhira Rafik
"Subscription Video on Demand (SVoD) merupakan layanan video streaming dengan metode subscription yang dibayarkan pengguna pada periode tertentu untuk dapat mengakses seluruh konten yang disediakan SVoD. Banyaknya judul program baik film, series, tv show, dan konten video lainnya yang ada pada SVoD memberikan penggunanya semakin banyak pilihan untuk menentukan program mana yang ingin ditonton. Untuk menghindari kebingungan dan kesulitan yang dirasakan pengguna dari banyaknya pilihan program, SVoD menyediakan rekomendasi yang disesuaikan dengan personalisasi pengguna dengan harapan dapat mempermudah pengguna dalam menentukan tontonan program yang mungkin disukai. Dalam rangka mengidentifikasi faktor-faktor yang dapat memengaruhi niat keberlanjutan penggunaan SVoD, penelitian ini menyertakan kualitas rekomendasi untuk menganalisis pengaruhnya terhadap kepuasan, manfaat yang dirasakan, dan experience pengguna dalam menggunakan SVoD. Flow theory digunakan dalam penelitian ini untuk mengukur pengalaman holistik pengguna ketika dalam keterlibatan dan merasakan kenikmatan dari menggunakan SVoD. Metode analisis yang digunakan pada penelitian ini yaitu mixed-method dengan melakukan analisis kuantitatif terlebih dahulu, lalu dilanjutkan dengan analisis kualitatif. Analisis data kuantitatif dilakukan dengan metode PLS-SEM dengan data yang berhasil terkumpul melalui penyebaran kuesioner online sebanyak 394 pengguna SVoD. Hasil dari pengolahan analisis data didapatkan bahwa recommendation accuracy, recommendation novelty, dan recommendation diversity memengaruhi perceived usefulness dan flow. Selain itu, kualitas rekomendasi yang memengaruhi satisfaction hanya recommendation novelty dan satisfaction juga dipengaruhi oleh perceived usefulness dan flow. Selanjutnya, satisfaction, perceived usefulness, dan flow terbukti memengaruhi continuance intention. Hasil yang didapatkan dari penelitian ini diharapkan dapat memberikan saran praktis bagi penyedia layanan SVoD untuk meningkatkan pengembangan kualitas rekomendasi yang dapat memengaruhi niat keberlanjutan penggunaan SVoD.

Subscription Video on Demand (SVoD) is one of the video streaming service kind with a subscription method that the user pays within a certain period of time to get full access to watch all content provided by SVoD. The increasing number of program titles, including movies, series, tv shows, and other video content provided by SVoD gives users more choices to determine which programs they want to watch. SVoD provides recommendations that are customized to the user’s personalization in the hope that it can make it easier for users to determine which programs they might like to watch. In order to identify factors that may affect the continuance intention of using SVoD, this research included the quality of recommendation to analyze its influence on user’s satisfaction, perceived usefulness, and experience in using SVoD. Flow theory is used in this research to measure the user’s holistic experience when engaging and feel the enjoyment of using SVoD. Mixed-method is used in this research as an analysis method by conducting the quantitative method first, then continued with the qualitative method. Quantitative data analysis was carried out using the PLS-SEM method with data collected through the distribution of online questionnaires with a total of 394 SVoD users as respondents in this research. The result of processing data analysisi found that recommendation accuracy, recommendation novelty, and recommendation diversity affects perceived usefulness and flow. In addition, the quality of recommendations that affect satisfaction is only recommendation novelty, and satisfaction is also influenced by perceived usefulness and flow. Lastly, satisfaction, perceived usefulness, and flow are proven to affect continuance intention. The results obtained from this research are expected to provide practical advice for SVoD service providers to improve the development of the recommendation quality that can affect the continuance intention on using SVoD.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rifanti Putri Tallisha
"Subscription Video on Demand (SVoD) merupakan layanan video streaming dengan metode subscription yang dibayarkan pengguna pada periode tertentu untuk dapat mengakses seluruh konten yang disediakan SVoD. Banyaknya judul program baik film, series, tv show, dan konten video lainnya yang ada pada SVoD memberikan penggunanya semakin banyak pilihan untuk menentukan program mana yang ingin ditonton. Untuk menghindari kebingungan dan kesulitan yang dirasakan pengguna dari banyaknya pilihan program, SVoD menyediakan rekomendasi yang disesuaikan dengan personalisasi pengguna dengan harapan dapat mempermudah pengguna dalam menentukan tontonan program yang mungkin disukai. Dalam rangka mengidentifikasi faktor-faktor yang dapat memengaruhi niat keberlanjutan penggunaan SVoD, penelitian ini menyertakan kualitas rekomendasi untuk menganalisis pengaruhnya terhadap kepuasan, manfaat yang dirasakan, dan experience pengguna dalam menggunakan SVoD. Flow theory digunakan dalam penelitian ini untuk mengukur pengalaman holistik pengguna ketika dalam keterlibatan dan merasakan kenikmatan dari menggunakan SVoD. Metode analisis yang digunakan pada penelitian ini yaitu mixed-method dengan melakukan analisis kuantitatif terlebih dahulu, lalu dilanjutkan dengan analisis kualitatif. Analisis data kuantitatif dilakukan dengan metode PLS-SEM dengan data yang berhasil terkumpul melalui penyebaran kuesioner online sebanyak 394 pengguna SVoD. Hasil dari pengolahan analisis data didapatkan bahwa recommendation accuracy, recommendation novelty, dan recommendation diversity memengaruhi perceived usefulness dan flow. Selain itu, kualitas rekomendasi yang memengaruhi satisfaction hanya recommendation novelty dan satisfaction juga dipengaruhi oleh perceived usefulness dan flow. Selanjutnya, satisfaction, perceived usefulness, dan flow terbukti memengaruhi continuance intention. Hasil yang didapatkan dari penelitian ini diharapkan dapat memberikan saran praktis bagi penyedia layanan SVoD untuk meningkatkan pengembangan kualitas rekomendasi yang dapat memengaruhi niat keberlanjutan penggunaan SVoD.

Subscription Video on Demand (SVoD) is one of the video streaming service kind with a subscription method that the user pays within a certain period of time to get full access to watch all content provided by SVoD. The increasing number of program titles, including movies, series, tv shows, and other video content provided by SVoD gives users more choices to determine which programs they want to watch. SVoD provides recommendations that are customized to the user’s personalization in the hope that it can make it easier for users to determine which programs they might like to watch. In order to identify factors that may affect the continuance intention of using SVoD, this research included the quality of recommendation to analyze its influence on user’s satisfaction, perceived usefulness, and experience in using SVoD. Flow theory is used in this research to measure the user’s holistic experience when engaging and feel the enjoyment of using SVoD. Mixed-method is used in this research as an analysis method by conducting the quantitative method first, then continued with the qualitative method. Quantitative data analysis was carried out using the PLS-SEM method with data collected through the distribution of online questionnaires with a total of 394 SVoD users as respondents in this research. The result of processing data analysisi found that recommendation accuracy, recommendation novelty, and recommendation diversity affects perceived usefulness and flow. In addition, the quality of recommendations that affect satisfaction is only recommendation novelty, and satisfaction is also influenced by perceived usefulness and flow. Lastly, satisfaction, perceived usefulness, and flow are proven to affect continuance intention. The results obtained from this research are expected to provide practical advice for SVoD service providers to improve the development of the recommendation quality that can affect the continuance intention on using SVoD.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>