Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 93659 dokumen yang sesuai dengan query
cover
Christoveny
"ABSTRAK
CreditMetrics merupakan salah satu model internal untuk pengukuran risiko kredit. Penggunaan model internal direkomendasikan oleh Basel II dalam rangka menghasilkan pengukuran risiko yang sesuai dengan profil risiko bank dan secara umum dapat menghemat modal yang dibutuhkan bank. Dalam penyusunan matrik transisi digunakan data perkembangan kualitas kredit korporasi Bank XYZ periode bulan April 2007 sampai dengan April 2009. Expected Loss dengan CreditMetrics periode Mei 2009 sampai dengan Februari 2010 rata-rata sebesar Rp.8,4 Milyar atau lebih kecil dari PPA yang wajib dibentuk yang rata-rata sebesar Rp.429 Milyar. Kebutuhan modal dengan Metode CreditMetrics berdasarkan Value at Risk periode Mei 2009 hingga Februari 2010 pada tingkat kepercayaan 99% adalah rata-rata sebesar Rp.496 milyar atau lebih rendah dari kebutuhan modal dengan pendekatan standar Basel I yang sebesar Rp.3.095 milyar. Berdasarkan back testing, tidak terdapat nilai kerugian aktual yang melebihi VaR, sehingga metode CreditMetrics dapat digunakan Bank XYZ dalam pengukuran risiko kredit korporasi.

ABSTRACT
CreditMetrics is one of internal model to measure credit risk. Internal model is recommended by Basel II to measure credit risk since it?s more precisely to describe bank?s risk profile; moreover; it?s required slighter economic capital than standardized approach. Data trends of corporate credit quality from April 2007 to April 2009 are used in transition matrices. Average expected loss by CreditMetrics between May 2009 to February 2010 reached Rp.8,4 billion or less than Allowance for Bad Debt by Rp.429 billion. According to VaR from May 2009 to February 2010 at 99% confidence level, average required Economic Capital by using CreditMetrics is amounted Rp.496 billion or smaller than standardized approach under Basel I at Rp.3.095 billion. Based on back testing, there are not actual losses more than VaRs, furthermore CreditMetrics method can be used to measure corporate credit risk by Bank XYZ.
"
2010
T28260
UI - Tesis Open  Universitas Indonesia Library
cover
Yulian Hadromi
Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2008
T25396
UI - Tesis Open  Universitas Indonesia Library
cover
Ira Widayanti
"Metode Credit Risk+ telah banyak digunakan untuk mengukur risiko kredit portofolio dengan karakteristik small balances dengan high volumes, seperti pada portofolio kartu kredit, dimana probability of default (PD) masing-masing account tidak saling mempengaruhi satu sama lainnya. Seperti yang telah disadari sebelumnya bahwa metode Credit Risk+ ini memiliki beberapa kelemahan yaitu salah satunya adalah mengabaikan pengaruh faktor eksternal seperti risiko pasar dan suku bunga.
Dalam penelitian ini penulis mencoba menarik hubungan antara beberapa faktor makro ekonomi terhadap probability of default eksposur kartu kredit setiap band. Nilai Expected Loss, Value at Risk (Unexpected Loss), dan Economic Capital dihitung dengan menggunakan unexpected number of default yang berasal dari hasil regresi linier PD terhadap variabel makro ekonomi.

Credit Risk+ method has been applied to measure credit risk of portfolios with small balances and high volumes such as credit cards porfolio, in which the probability of default (PD) of each account is mutually exclusive. As known before, there are some limitations of this method, like disregarding the influence of external factors such as market risk and interest rate risk.
In this research, the author is trying to find any correlations between macroeconomics variables and probability of default of credit cards exposures in each band. The values of Expected Loss, Value at Risk and Economic Capital will be measured by using unexpected numbers of default which are originated from single linear regression of PD to macroeconomics variables."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2010
T28121
UI - Tesis Open  Universitas Indonesia Library
cover
Justina Ruly Sulistyarini
"Untuk menjalankan lungsinya sebagai financial intermediary. risiko terbesar yang dihadapi bank adalah risiko kredit. Olch karena itu merupakan suatu hal yang panting bagi bank untuk dapat mengukur seberapa besar risiko kreditnya. Pengukuran risiko kredit ini dilakukan dengan terlebih dahulu menentukan model risiko kredit yang tepat.
Pengukuran risiko kredit usaha mikro pada Bank X dengan pendekatan standar yaitu berdasarkan Surat Edaran BI No.8/3/DPNP tanggal 30 Januari 2006 tidak menghasilkan ukuran risiko yang tepat, karenanya diperlukan alat pengukur risiko yang lain. Tujuan penelitian dalam karya akhir ini adalah untuk mengukur besarnya risiko kredit usaha mikro (KUM) pada Bank X dengan metode Credit Risk.
KUM adalah kredit kelolaan Micro Banking and Sales Group pada Bank X yang diklasifikasikan menjadi beberapa jenis produk. yaitu KUM Mandiri. KUM Mapan, KUM Prima, KUM Kelompok dan KUM Karya. Produk-produk tersebut memiliki limit kredit maksimum Rp100.000.000,00 (seratus juta Rupiah).
Produk KUM dipasarkan oleh Bank X sejak bulan Maret 2005. Sampai dengan 31 Mei 2006 Bank X telah menyalurkan KUM sebanyak Rp 1,016 Milyar dengan 59.130 rekening debitur.
Credit Risk+ adalah metode pengukuran risiko kredit yang tepat untuk bald debet pinjaman yang kecil dengan jumlah rekening yang sangat banyak, karena metode ini tidak memerlukan tambahan data makro dan merupakan default mode.
Dalarn pengukuran risiko KUM dengan metode Credit Risk+, terdapat pembatasan sebagai berikut :
1. Data yang digunakan adalah data portfolio KUM pcriode bulan Juni 2005 sampai dengan Mei 2006. Penggunaan data periode tersebut karma produk KUM barn dipasarkan pada bulan Mat-et 2005 dan krcdil dinyatakan default apabila umur tunggakan kewajiban lcbih dari 90 hari. Oleh karena itu kemungkinan terdapatnya default KUM minimal 90 hari setelah diberikannya fasilitas KUM tersebut, yaitu pada bulan Juni 2005.
2. Kredit dinyatakan default apabila tunggakan kcwajibannya telah melebihi 90 hari atau berdasarkan kolektibilitas BI tergolong kredit Kurang Lancar, Diragukan dan Macet. Pengukuran risiko KUM dengan menggunakan metode Credit Risk menunjukkan hasil sebagai berikut :
1. Dengan menggunakan metode Credit Risk, pada bulan Mei 2006 nilai expected loss sebesar Rp 69,74 milyar dan nilai unexpected loss sebesar Rp 104,03 milyar. Hal ini menunjukkan bahwa nilai VaR untuk bulan Mei 2006 adalah sebesar Rp 104,03 milyar, artinya dengan tingkat keyakinan sebesar 95% maka besarnya risiko kerugian maksimum akibat terjadinya default pada portfolio KUM untuk satu bulan ke depan diperkirakan sebesar Rp 104,03 milyar. Jumlah tersebut adalah 10,24% dari total baki debet KUM.
2. Dengan metode Credit Risk bank hams menyediakan modal untuk mencover risiko KUM pada bulan Mei 2006 sebesar 10,24% x 8%= 0,82% dari baki debet KUM atau sebesar Rp 8,32 milyar.
3. Surat Edaran BI No.813IDPNP tanggal 30 Januari 2006 menyatakan bahwa bobot risiko untuk Kredit Usaha Kecil (KUK) sebesar 85 %., maka bank harus menyediakan modal untuk mencover risiko KUM pada bulan Mci 2006 sebesar 85% x 8% = 6.80% dari baki debet KUM atau sebesar Rp 69,12 milyar.
4. Perbedaan kebutuhan modal yang harus disediakan Bank X berdasarkan metode Credit Risk dan berdasarkan SE BI No.8/3/DPNP untuk bulan Mei 2006 adalah sebesar Rp 69,12 milyar - Rp 8,32 milyar = Rp 60,8 milyar.
5. Berdasarkan basil pengujian model dengan backtesting dan likelihood ratio, maka metode Credit Risk dapat dipertimbangkan sebagai model internal untuk mengukur risiko KUM Bank X maupun kredit usaha kecil lainnya yang memiliki karakteristik yang sama.
Metode CreditRisk+ ini dapat dikembangkan sebagai sistem pengukuran risiko yang terintegrasi dengan cor banking sistem pada Bank X juga dapat dimanfaatkan untuk melakukan monitoring dan pengawasan yang lebih efektif terhadap portfolio KUM, dengan cara memfokuskan perhatian pada kelompok debitur dengan nilai eksposur yang tinggi dengan default rate yang terbesar.

As a financial intermediary, the greatest risk a bank has to face is credit risk. Therefore. it is very crucial for a bank to measure its credit risk. First, determining the model of the credit risk does the measurement of credit risk.
The measurement of the risk of micro banking in Bank X by standard approach does not give an accurate profile of its credit risk; therefore another measurement tool is needed. This paper is aimed to measure the credit risk of micro banking (Kredit Usaha Mikro/KUM) of Bank X by CreditRisk+ method.
KUM is managed by Micro Banking and Sales Group of Bank X, which are classified into several types of products, such as KUM Mandiri, KUM Mapan, KUM Prima, KUM Kclompok and KUM Karya. Those products have maximum limit of Rp. 100.000,000,00 (a hundred million rupiahs).
Bank X has launched the KUM products on March 2005. Till the end of May 2006, Bank X has facilitated KUM at the amount of Rp. 1.016 billion for 59,130 customer accounts.
Credit Risk' is suitable for credit risk measurement of loans with small outstanding balance and has many customer accounts, because this method does not need additional data about macro economics and is one of the default mode method.
To measure the risk of KUM by Credit Risk+ method, there are limitations as follows:
1. The data used are KUM portfolio data in the period of June 2005 until May 2006. The period is chosen because the products have been launched since March 2005 and the credit is stated as default whenever the facilities arc under performed for more than 90 days. Therefore the default facilities may be found after 90 days after the first KUM were facilitated, i.e. in June 2005.
2. The credit is slated as default whenever the facilities are under performed for more than 90 days or based on 131 collection is classified as Kredit Kurang Lacar, Diragukan and Macet.
The risk measurement by Credit Risk has the following results:
1. The amount of expected loss on May 2006 is Rp. 69.74 billion and the amount of unexpected loss is Rp. 104.03 billion. This shows that the VaR on May 2006 is Rp. 104.03 billion, which is meant that with the 95% confidence level, the maximum risk loss because of default of portfolio KUM for one month ahead is Rp. 104.03 billion. The amount is about 10.24% of the KUM's outstanding balance.
2. On May 2006 the bank has to provide capital to cover the risk of KUM in the amount of 10.24% x 8% = 0.82% of tine KUM's outstanding balance, or Rp.8.32 billion.
3. The circulating letter of BI no.8/3/DPNP dated January, 30, 2006 is stated that the risk-weighted for Kredit Usaha Kecil (KUK) is 85%, so the bank has to provide capital to cover the KUM credit risk on May 2006 is in the amount of 85% x 8% = 6,80% of the KUM's outstanding balance, or Rp. 69.12 billion.
4. The difference of capital needed based on Credit Risk + method and SE BI no. 8/3/DPNP on May 2006 is Rp. 69.12 billion - Rp.8.32 billion = Rp. 60.8 billion.
5. Based on the backtesting and likelihood ratio procedure, the Credit Risk+ method can be used as the internal model to measure the credit risk of KUM portfolio of Bank X and other small amount loans which is has the same characteristics.
The CredilRisk+ method can be developed as the integrated risk measurement system with czar banking system of Bank X. and also can he used as a more effective monitoring and supervising tools for KUM portfolio, with lousing on the customer group with high exposure and high default rate."
Depok: Universitas Indonesia, 2006
T18564
UI - Tesis Membership  Universitas Indonesia Library
cover
Diah Kusumo Dewi
"Penerapan CreditRisk+ dilakukan untuk menghitung risiko kredit usaha kecil pada Bank X se1ama kurun waktu Januari 2006 - Desember 2008. CreditRisk"' merupakan default mode yang memandang kualitas kredit sebagai default dan no default, tidak mengasumsikan penyebab terjadinya default. Kredit dinyatakan default apabila tunggakan kewajibannya telah melebihi 90 hari, sesuai ketentuan Bank Indonesia. Pengukuran CreditRisk+ dilakukan dalam 2 tahapan. yaitu : pertama menghitung frequency of defaults dan severity of losses, kedua menghitung distribution of default losses. Frequency of defaults dihitung dengan menggunakan distribusi Poisson dengan tingkat keyakinan 95%. Sedangkan severity of losses diperoleh dengan menghitung loss given default. Sementara distribution of default losses diperoleh dengan menghitung besarnya potensi kerugian berupa expected loss, unexpected loss, dan economic capital, yaitu cadangan modal yang harus disiapkan uotuk menutup unexpected loss. Berdasarkan hasil backtesting dengan Loglikelihood Ratio (LR) Test diperoleh nilai LR sebesar 0 yang lebih kecil dibandingkan nilai kritis Chi-squared sebesar 3.8415 yang menunjukkan bahwa metode CreditRisk"' masih valid digunakan sebagai model internal untuk mengukur risiko kredit usaha kecil pada Bank X.

Implementation of CreditRisk+ is used for small enterprise credit measurement of Bank X during Januari 2006- Desember 2008. CreditRisk+ is a default mode model that credit quality as a default and no default, no assumptions are made about the causes of default. Credit is stated default if a pending of credJt payment is more than 90 days, based on Bank Indonesia regulation. CreditRisk• measurement has two steps, first measuring frequency of defaults and severity of losses, second measuring distribution of default losses. Frequency of defaults is measured by using Poisson distribution with 95% confidence level. Severity of losses is taken by measuring loss given default. Meanwhiles, distribution of default losses is taken by measuring potensial default such as expected loss, expected loss, and economic capital, capital reserved that has to be prepared to cover unexpected loss. Based on the results of the backtesting through Loglikelihood Ratio (LR) Test, a Likelihood Ratio of 0 is smaller than a Chi-squared of 3.8415 which represents that CreditRisk+ method is still valid to be used for internal model for measuring small enterprise credit of Bank X."
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2009
T 27173
UI - Tesis Open  Universitas Indonesia Library
cover
Yulianto Kartiko
"Tesis ini membahas pengukuran risiko kredit menurut Basel II, yang berbeda dengan ketentuan Basel I yang berlaku saat ini. Untuk pengukuran kredit korporasi PT. Bank X telah mulai mempersiapkan diri dengan menerapkan sistem internal rating yang berjalan mulai tahun 2004. Internal rating merupakan salah syarat yang harus dipenuhi untuk melakukan pengukuran kredit sesuai dengan Basel II.
Basel II memperkenal 3 metode pengukuran risiko kredit terutama untuk kredit usaha, yaitu Standardized Approach, IRB Foundation Appraoch dan IRB Advanced Approach. Dalam tulisan ini ketiga metode tersebut diterapkan untuk mengukur minimum capital charg.. Sesuai dengan data yang diperoleh risiko kredit yang diukur adalah portepel kredit yang dimiliki oleh Divisi Usaha Menegah PT. Bank X.
Hasil pengukuran risiko kredit ini masing-masing diperbandingkan mana yang lebih effisien dalam menghitung risiko kredit. Selanjutnya hasil kesimpulan yang diperoleh dapat dijadikan bahan masukan bagi manajemen PT. Bank X, ataupun bank-bank lain yang menghadapi permasalahan yang sama.

The focus of this study is measuring credit risk using Basel II method. This preparation already started from 2004 through the implementation of internal rating system. Internal rating system as one of the term to be full filled to measring credit risk using Basel II.
Basel II introduce 3 methods to measuring credit risk specialy for corporate loan, which is Standardized Approach, IRB Foundation Approach dan IRB Advanced Approach. The subject on this paper is to implement 3 methods, calculate minimum capital charge using data of credit portfolio middle marker segment PT. Bank X.
The results from the measurement of each method then compared to find which method is more efficient in calculating credit risk. Therefore the conclusion is an input for the management of PT. Bank X as for the other banks who facing the same problem.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2008
T25408
UI - Tesis Open  Universitas Indonesia Library
cover
Iik Ganjar Taufik Hidayat
"Metode pengukuran risiko kredit pada Bank X saat ini menggunakan metode standard (Basel I) dimana metode ini telah diketahui umum memiliki banyak kelemahan yang salah satunya adalah kurang sensitif terhadap kualitas kredit. Sejalan dengan tuntutan Basel II dalam penghitungan pemenuhan modal minimum, Bank X telah memiliki Intenal Rating System, namun belum dapat menetukan model pengukuran risiko kredit apa yang paling sesuai dengan karakteristik bisnisnya_ Karya akhir ini mengukur risiko kredit usaha menengah Sank X menggunakan metode CreditMetrics dan dibandingkan hasilnya dengan metode standard.
Data yang digunakan untuk menghitung probabilitas migrasi rating adalah data rating debitur usaha Menengah antara Bulan Januari 2004 hingga Juli 2006, sedangkan untuk penghitungan VaR menggunakan data seluruh portofolio usaha tersebut. Data pendukung lainnya diperoleh dari Bisnis Indonesia, dan sumber lain di Bank X. Tahap-tahap penghitungan EL dan UL mengikuti metode seperti yang disampaikan dalam Tecnicral Document CreditMetrics dari J.P Morgan (1997) serta beberapa literatur tekait. Untuk mempermudah penghitungan terlebih dahulu dibuatkan aplikasi kecil menggunakan Microsoft Visual Basic 6.0 dan Microsoft Access 2002.
Hasil pengolahan data menunjukkan bahwa EL yang dihitung dengan CreditMetrics jauh lebih kecil dibandingkan dengan PPA yang dibentuk oleh Bank X yaitu sekitar 5.47%. Perlu dicatat bahwa pembentukan PPA yang dilakukan Bank X lebih besar dari yang wajib dibentuk yaitu kurang lebih 140%. Pada tingkat kepecayaan 99%, VaR yang dihasilkan adalah rata-rata sebesar 10.86% dari besarnya portofolio, lebih besar dibandingkan dengan ketentuan pemenuhan modal minimum saat ini yaitu sebesar 8%. Untuk tingkat kepercayaan lain yaitu 95% dan 90% nilai VaR lebih kecil dari 8%.
Realisasi kerugian yaitu hapus buku selama periode pengamatan, nilainya selalu lebih kecil dibandingkan besarnya VaR pada seluruh tingkat kepercayaan, dengan demikian tidak tidak terdapat penyimpangan. Meskipun hal ini mengarahkan pada kesimpulan seolah-olah CreditMetrics adalah model yang baik, namun perlu mendapat perhatian bahwa dalam pelaksanaan penghapusbuku banyak didasari pertimbangan non bisnis.

The standard method (Basel I) is used by Bank X as a method to measure Credit Risk. Unfortunately it has well known much weakness such as less sensitive to credit quality. According to Basel II in calculating of the total minimum capital requirement, Bank X have implemented Internal Rating System, but somehow still not been able to choose credit risk measurement model which is the best for its business characteristic. This Paper measures the middle market credit risk usahat with Credit Metrics method and compares the result with the standard method.
The data used to calculate rating migration are obtained from middle market segment customer rating report from Januari 2004 to July 2006, meanwhile VaR is calculated using all segment portfolio. Other supporting data are obtained from Business Indonesia and Bank X. EL and UL calculation steps come from Credit Metrics Technical Document from J.P Morgan (1997) and other literatures. Small application developed by utilizing Visual Basic 6.0 and Microsoft Access 2002 is used to help on calculation.
Calculation result shows that EL with Credit Metrics having smaller number than recent reserve with proportion of about 5.47%. As an attention, Bank X booking reserve is bigger than minimum reserve requirement which is about 140%. On 99% confident level VaR, the result is about 10.86% from the portfolio, which is bigger than capital minimum requirement. On another confidence level (i.e 95% and 90%), VaR is less then 8%.
Real loss during period of perception is less than VaR with all conficence level conditions. This condition leads to incorrect decision that Credit Metrics is assumed to be a Good model to measured credit risk. In reality, writing-off decision is commonly made of non-business consideration."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2007
T19750
UI - Tesis Membership  Universitas Indonesia Library
cover
Olof, Robert
"Karya akhir ini mempunyai tiga tujuan yaitu PT. XYZ dapat mengukur berapa besar probability of default dari Kendaraan Bermotor yang dibiayainya, PT. XYZ dapat mengukur kerugian yang dapat diperkirakan dan kerugian yang tidak dapat diperkirakan dari portofolio pembiayaan kendaraan bermotor serta dapat mengetahui besamya economic capital yang harus disediakan untuk rneng-cover risiko kerugian yang tidak dapat diperkirakan sehingga manajemen PT. XYZ dapat membuat suatu keputusan yang tepat untuk minimalisasi risiko yang akan timbul, dan model CreditRisk+ yang digunakan diharapkan dapat diterapkan untuk jenis kredit lain seperti Kredit Kepemilikan Rumah, Personal Loan dengan ciri yang hampir sama dengan Kredit Kepemilikan Kendaraan, sehingga dapat mengalokasikan secara lebih optimal seluruh sumber daya yang dimiliki.
Penerapan CreditRisk+ dilakukan untuk mengukur risiko kredit di lembaga pembiayaan PT. XYZ dengan batasan sebagai berikut. Pertama, obyek penelitian adalah kendaraan bermotor yang dibiayai pada PT. XYZ yang merupakan salah satu lembaga pembiayaan khusus kendaraan bermotor di Indonesia. Kedua, data yang digunakan adalah data bulanan portofolio kendaraan bermotor pada tahun 2003, 2004 dan 2005 dengan nilai eksposur antara Rp 500 ribu hingga Rp 250 juta. Ketiga, kredit dinyatakan default apabila tunggakan kewajibannya telah melebihi 90 hari.
Hasil pengukuran risiko kredit dengan menggunakan CreditRisk+ dengan asumsi tingkat keyakinan 99% dan probability of default dihitung dengan Poisson Model menunjukkan sebagai berikut:
1. Pengukuran risiko kredit dengan memakai pendekatan CreditRisk+ model yang dikeluarkan oleh Credit Suisse First Boston dapat digunakan untuk mengukur risiko kredit dari portofolio pembiayaan kendaraan bermotor PT. XYZ kepada konsumennya, hal ini karena pengukuran risiko kredit dengan metode ini sangat sederhana karena lebih memfokuskan kepada keadaan default atau non default dan tidak'mesnpersoalkan faktor-faktor penyebab terjadinya default. Selain itu model ini tidak mempertimbangkan terjadinya migrasi kualitas kredit.
2. Hasil pengukuran risiko kredit dengan menggunakan model CreditRrsk+ untuk portofolio pembiayaan kendaraan bermotor PT. XYZ sepanjang masa observasi tahun 2003 hingga tahun 2005 menunjukkan bahwa poterisi kerugian yang diperk.irakan (expected loss) dan risiko kredit (ditunjukkan oleh VaR atau Unexpected Loss) mempunyai kecenderungan yang meningkat. VaR or Unexpected Loss di bulan Januari 2003 sebesar Rp 31,256,000,000 dan meningkat lebih dari dua kali Iipatnya yaitu sebesar Rp 65,699,000,000 di bulan Desember 2005. Dengan adanya kecenderungan peningkatan risiko ini diharapkan pengelolaan atas portofolio pembiayaan kendaraan bermotor PT. XYZ kepada nasabahnya dapat lebih bail( dan efektif, terutama dalam mengantisipasi bertambahnya pembiayaan yang bermasalah.
3. Dori perhitungan economic capital terlihat bahwa kecukupan modal yang dibutuhkan atas portofolio penyaluran pembiayaan yang dilakukan oleh PT. XYZ kepada konsumennya sepanjang tahun 2003 berada pada range Rp 16,237,303,325 - Rp 21,775,587,804. Pada sepanjang tahun 2004 berada pada range Rp 21,910,884,312 - Rp 25,522,689,160 dan pada sepanjang tahun 2005 berada pada range Rp 23,040,855,020 - Rp 25,493,208,151. Apabila setiap nilai ini dibandingkan dengan modal PT. XYZ per Desember setiap tahunnya, maka dapat disimpulkan bahwa modal PT. XYZ masih cukup untuk menanggung adanya risiko kredit yang diakibatkan oleh unexpected credit default losses. Dengan melihat kebutuhan economic capital yang relatif kecil, sekitar 3% - 7% dari jumlah modal atas portofolio pembiayaan kendaraan bermotor sepanjang tahun 2003 - 2005, maka dapat disarankan untuk meningkatkan atau mengoptimisasikan portofolionya
4. Pengujian dengan metode Likelihood Ratio pada tingkat kepercayaan 95% menunjukkan bahwa selama periode pengarnatan, jumlah kejadian yang merugikan PT. XYZ dengan tingkat kerugian yang melebihi nilai VaR kredit masih di bawah ambang Batas jumlah kerugian yang dapat ditolerir, yang berarti bahwa metode pengukuran risiko dengan CreditRisk+ dapat diterima dan cukup akurat untuk mengukur risiko kredit portofolio pembiayaan PT. XYZ kepada konsumen.

This final research report has three purposes: able to measure probability of default from automobile financing portfolio of PT. XYZ, able to measure expected loss and unexpected loss, and also capable to estimate the level of economic capital to be reserved for covering unexpected loss so that PT. XYZ management can make right decision to minimize the risk, and CreditRisk+ model with the similar characteristic has expected to be applicable for other type of credit such as housing loans and personal loans, so PT XYZ resource allocation can be more optimal.
The application of CreditRisk+ was conducted to measure credit risk at automobile consumer financing company of PT. XYZ, with definition as follows. First, research object is automotive financed by PT. XYZ representing one of specialist on automotive financing company in Indonesia. Second, data used was monthly data of automobile consumer financing company in year 2003, 2004, and 2005 with exposure value between Rp 500 thousand until Rp 250 million. Third, credit was considered default if its obliged amount outstanding exceeded 90 days.
The result of credit risk measurement using CreditRisk+ with 99% confidence level and probability of default counted with Poisson Model show as follows:
1. Credit risk measurement result using CreditRisk+ model for automobile financing portfolio of PT. XYZ during observation period of year 2003 to 2005 showed that expected loss and credit risk (represented by VaR or Unexpected Loss) showed increasing trends. VaR or Unexpected Loss showed increasing trend from Rp 31,256,000,000 in January 2003 to Rp 65,699,000,000 in December 2005, and more than two-fold increase. With the tendency of increasing loss, we can hope for better and more effective for automobile financing of PT. XYZ lending portfolio management in the future, especially in anticipating the growing non-performing lending portfolios.
2. Economic capital assessment showed that capital adequacy needed to cover PT. XYZ's lending portfolio to consumer through 2003 was between Rp 16,237,303,325 - Rp 21,775,587,804, through 2004 was between Rp 21,910,884,312 - Rp 25,522,689,160 and through 2005 was between Rp 23,040,855,020 - Rp 25,493,208,151. This assessment showed that PT. XYZ capital as of December every year, was still more than adequate to cover the credit risk caused by unexpected credit default losses. This relatively small economic capital requirement, about 3 to 7 percent of automobile financing portfolio of PT. XYZ during the year of 2003 to 2005, suggested opportunity for increased and more optimized PT. XYZ's portfolio.
3. By comparing actual loss with VaR during observation period (January 2003 - December 2005), obviously that actual loss per month still below VaR, this mean that the loss risk automobile financing portfolio of PT. XYZ to consumer still able in covering by PT. XYZ.
4. Model validation using Likelihood Ratio test with 95% confidence level showed that during evaluation period, the frequency of events that may jeopardize PT. XYZ with the loss level exceeding credit VaR was still under the tolerable loss level limit. It is then safe to conclude that CreditRisk+ is acceptable and quite accurate method for measuring credit risk on automobile financing of PT. XYZ's lending portfolio to consumer.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2006
T18276
UI - Tesis Membership  Universitas Indonesia Library
cover
Gayatri Rejeki
"Berdasarkan ketentuan Basel II perhitungan risiko kredit dapat menggunakan beberapa pendekatan, yaitu standardized approach dan Internal Rating Based Approach. Bank XYZ belum menerapkan pendekatan Internal Rating Based Approach untuk menghitung risiko kredit pada produk kartu kredit. Sampai saat ini Bank XYZ menggunakan yaitu standardized approach untuk menghitung risiko kredit pada produk kartu kredit. Pada penelitian ini menggunakan pendekatan Internal Rating Based Approach dengan pendekatan Creditrisk+ dalam menghitung risiko kredit pada produk kartu kredit.
Hasil akhir dari penelitian ini dengan menggunakan metode CreditRisk+ berupa nilai expected loss dan unexpected loss atau value at risk (VaR) yang kemudian digunakan untuk memproyeksikan tingkat economic capital yang dibutuhkan. Pada penelitian ini, hasil perbandingannya adalah nilai Actual loss < nilai VaR.
Dari hasil penelitian diketahui nilai rata-rata VaR selalu lebih besar dibandingkan dengan nilai actual loss untuk periode 2010-2012. Pada tahun 2010 memiliki nilai rata-rata VaR sebesar Rp 21 milyar dan nilai actual loss-nya sebesar Rp 18,174 milyar. Pada tahun 2011 memiliki nilai VaR sebesar Rp18,378 milyar dan nilai actual loss sebesar Rp 15,539 milyar. Sedangkan pada tahun 2012 memiliki nilai VaR sebesar Rp 24,471 milyar dan nilai actual loss sebesar Rp 21,179 milyar. Hal tersebut menunjukkan bahwa risiko akibat adanya default kredit masih dapat ditutupi oleh Bank XYZ.
Pengujian metode CreditRisk+ pada tingkat keyakinan 95% membuktikan bahwa selama periode pengamatan jumlah kejadian yang merugikan Bank XYZ dengan kerugian yang lebih besar dari nilai Expected Loss masih dibawah ambang batas dengan kerugian yang masih dapat ditolerir. dalam hal ini memperlihatkan bahwa kinerja metode CreditRisk+ relatif akurat dalam menghitung risiko kredit untuk produk retail seperti kartu kredit. Economic capital required dihitung secara bulanan, sebagai contoh pada bulan Desember 2012 pencadangan modal yang dibutuhkan sebesar Rp 3,31 milyar. Perhitungan dilakukan sesuai dengan periode penelitian, yaitu dari bulan Januari 2010 sampai dengan Desember 2012.

Under the terms of the Basel II credit risk calculation can use several approaches, namely the standardized approach and the Internal Rating Based Approach . XYZ Bank has not implemented the Internal Rating Based approach for calculating credit risk on credit card products. Until now XYZ Bank uses the standardized approach to calculate credit risk on credit card products. In this study using the Internal Rating Based approach with CreditRisk + approach to calculating the credit risk on credit card products. The final results of this study using a CreditRisk+ are expected loss and unexpected loss or value-at- risk (VaR), then used to project the level of economic capital required. In this study, the results of the comparison is the value of actual loss < VaR. Thus CreditRisk+ method can be used to measure credit risk in the Bank's credit card product XYZ.
The results showed the average VaR value is always greater than the actual loss values for the period 2010-2012. In the year 2010 had an average VaR value of Rp 21 billion and the value of its actual loss of Rp 18.174 billion. In 2011 the VaR value of Rp18, 378 billion and the value of actual loss of Rp 15.539 billion. Whereas in 2012 the VaR value of Rp 24.471 billion and the value of actual loss of Rp 21.179 billion. It shows that the risk due to credit defaults can still be covered by the XYZ Bank.
Testing methods CreditRisk+ at 95% confidence level during the period of observation proves that the number of adverse events with Bank XYZ greater losses than Expected Loss value is still below the threshold at which losses can be tolerated. in this case shows that the performance of the method is relatively accurate CreditRisk+ in calculating the credit risk for retail products like credit cards. economic capital required calculated on a monthly basis, for example in December 2012 the required reserve capital of Rp 3.31 billion. The calculation is performed according for period from January 2010 to December 2012.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2013
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Lengkong, Virnaria C.M.
"Kondisi perbankan di Indonesia dari tahun ke tahun mengalami peningkatan yang cukup tinggi setelah mengalami krisis ekonomi pada tahun 1997 Pada tahun 2004, tercatat persetujuan kredit baru di seluruh bank umum sebanyak Rp 31 1,63 triliun dimana jumlah ini meningkat 32,59% dari tahun 2003 yang mencapai Rp.235,04 triliun. Sehingga perbankan Indonesia dituntut untuk melakukan pengelolaan usaha dengan prinsip kehatihatian. Salah satu pengelolaan yang dilakukan perbankan adalah pengelolaan risiko Salah satu risiko vital yang butuh pengelolaan yang intcnsif adalah risiko kredit.
PT. Bank XYZ merupakan bank yang sudah menerapkan pengelolaan risiko kredit dengan menggunakan infrastruktur internal rating dalam pengukuran risiko kreditnya. Salah satu melode perhitungan risiko kredit dengan menggunakan sistem internal rating adalah Macro Simulation Approach. Dengan menggunakan pendekatan Macro Simulation, PT. Bank XYZ dapat melihat pengaruh faktor ekonomi makro terhadap probability of default debiturnya. Sehingga tidak semata-mata risiko dilihat pada kondisi keuangan debiturnya saja. Adapun faktor ekonomi makro yang diamati mencakup PDB, IHSG, inflasi, SBI, Kurs USD dan Kurs WY, dimana beberapa diantara faktor ekonomi tersebut mempengaruhi pergerakan credit rating debitur sektor manufaktur PT. Bank XYZ. Sebagai contoh, SBI mempengaruhi probabilitas credit rating BF menjadi E2, D2 menjadi D3, dan D3 menjadi E2.
Dengan pendekatan Macro Sinurlation Approach dapat diketahui probabilitas credit rating yang telah disesuaikan dengan pengaruh faktor ekonomi makro. Hasilnya adalah berupa matriks transisi conditional. Kemudian untuk mengetahui risiko kredit dilakukan pcrhitungan VaR krcdit) dengan menggunakan hasil probability of default kredit rating matriks transisi conditional (Macro Simmulation Approach). Sehingga jumlah maksimal kerugian yang dapat dialarni olch PT Bartk XYZ dari krcdit sektor manufaktur dengan tingkat keyakinan 95% adalah sebesar Rp.52 303 767 (dengan asumsi distribusi normal) atau Rp 181 105 913 495 (dengan asumsi distribusi tidak normal) Nilai diatas merupakan 0.0089% (dengan asumsi distribusi normal) atau 31.15% (dengan asumsi distribusi tidak normal) dari total kcseluruhan baki debet kredit sektor manufaktur. Dengan demikian PT. Bank XYZ diwajihkan untuk menyediakan pencadangan modal untuk meng-cover risiko krcdit sektor manufaktur sebesar 8% x 31,15% = 2,49% dari total baki debet pinjamannva.

After crisis at 1997. economic condition especially banking in Indonesia has been significantly grown. Year 2004, new credit approval for all banks achieved Rp. 311.63 billion. which is growth 32,59% from year 2003 for Rp. 235 04 billion. Subject to its growth. Indonesian banking should realized the risk especially credit risk that should be managed well.
PT. Bank XYZ has already established credit risk management with internal rating system in credit risk measurement One of credit risk measurement method using internal rating is Macro Simulation Approach. With Macro Simulation Approach. PT. Bank XYZ can observe the influence of macro economic factors aligned with probability of default of each company. The macro economic factors such as Gross Domestic Product (PDB), Indonesian Stock Price Index (1HSG). inflation. Government T-bills (SBI). USD Foreign Exchange (Kurs USD) and JPY Foreign Exchange (Kurs JPY) had effect on credit rating movement for credit manufacture at PT. Bank XYZ. For example. SBI had effect on probability of credit rating BI become E2, D2 become D3 and D3 become E2.
Result of Macro Simulation Approach which already aligned between probability of credit rating and macro economic factors is conditional transition matrix. Then calculation of credit risk with credit VaR (CreditMetrics) has to be conducted by using probability of default in conditional transition matrix (Macro Simulation Approach). Loss maximum amount of credit manufacture at PT. Bank XYZ with 95% confident level (assuming normal distribution) is Rp.52.303.767 or Rp. 183,105.913,495 (assuming actual distribution). This amount is 0 0089% (assuming normal distribution) or 31.15% (assuming actual distribution) from total of exposure of credit manufacture For capital requirement purpose. PT Bank XVZ has to reserve equity for 2.4994, 1% x 31 15% l from total exposure of credit manufacture PT Bank XYI. Using Macro Simulation Approach gives many advantage especially for capital requirement. because it is using internal rating which is gives every customer rating different portion of credit risk and so gives lesser reserve equity.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2006
T18498
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>