Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 195841 dokumen yang sesuai dengan query
cover
Shinta Nataya Paramesti
"Identifikasi wajah berdasarkan ciri bibir berpengaruh pada keberhasilan pencarian citra wajah orang dikarenakan adanya variasi bentuk bibir yang dapat menjadi pembeda tiap individu. Untuk mempercepat pencarian pelaku kriminal, sebuah sistem aplikasi identifikasi wajah berdasarkan ciri bibir menjadi suatu kebutuhan. Sistem tersebut harus dapat mengekstrak ciri bibir dari sebuah citra digital menggunakan metode ekstraksi ciri yang akurat dan cepat.
Penelitian ini melakukan studi analisis kinerja metode eigenface dengan eigen fuzzy set (himpunan fuzzy eigen) untuk ekstraksi ciri bibir dalam sistem identifikasi wajah. Eigenface adalah metode ekstraksi ciri yang telah terbukti keberhasilannya dalam mengekstrak ciri wajah, sedangkan metode eigen fuzzy set dikembangkan berdasarkan teori himpunan fuzzy dan dapat digunakan untuk analisa citra. Metode deteksi bibir otomatis berdasarkan ciri warna juga dievaluasi efektifitasnya untuk perolehan citra dalam penelitian ini. Analisis dilakukan dengan metode analisis statistik desktiptif dan statistik inferensi. Uji coba dilakukan untuk dua skenario yang dibedakan berdasarkan citra bibir hasil segmentasi manual dan otomatis.
Hasil uji coba menunjukkan bahwa hasil deteksi otomatis hanya efektif mendeteksi bibir sebanyak 61.4% dan precision-recall perolehan wajah pada skenario 2 lebih rendah dari skenario 1. Metode eigen fuzzy set memiliki waktu komputasi lebih rendah dibandingkan metode eigenface. Sedangkan nilai precision-recall tertinggi dihasilkan oleh metode eigenface dengan rata-rata nilai 0.22%. Dari hasil ini disimpulkan bahwa metode ekstraksi ciri eigenface lebih efektif dibandingkan eigen fuzzy set. Sistem identifikasi wajah dengan metode eigenface untuk ekstraksi ciri kedepannya dapat dikembangkan menjadi sistem identifikasi wajah berbasis komponen wajah."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2007
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dewi Khairani
"Penelitian ini merupakan kombinasi dari penelitian-penelitian sebelumnya mengenai pengenalan sudut-pandang dan wajah 3D dengan menggunakan Jaringan Saraf Tiruan (JST) yang sebelumnya menggunakan Self Organizing Map (SOM) dalam representasi ruang eigen dan penerapan algoritma genetika dalam menentukan ruang ciri yang optimal. Pada penelitian kali ini Jaringan Neural Buatan yang digunakan adalah Learning Vektor Quantization (LVQ) dalam ruang eigen dengan mengaplikasikan algoritma genetika untuk mengoptimasi ruang ciri. Untuk menganalisa seberapa baik pengenalan dengan menggunakan algoritma LVQ ini, dilakukan beberapa eksperimen dalam penelitian ini untuk memperbandingkan tingkat pengenalan pada sistem fully-KLT dan Subset II-KLT, dengan menggunakan algoritma genetika dan dengan menggunakan full eigen untuk sistem dengan dan tanpa reduksi awal pada PCA untuk masing-masing dataset yang telah ditentukan. Tingkat pengenalan terbaik untuk pengenalan sudut basis mencapai 96,9 %, pengenalan sudut tengah mencapai 67,7 % pada sistem fully-KLT dan pengenalan sudut tengah pada subset II-KLT mencapai hasil tertinggi sebesar 80,6 %. Sedangkan untuk pengenalan wajah, tingkat pengenalan terbaik mencapai 79,2 %, pada pengenalan wajah peningkatan jumlah citra uji GA ternyata tidak memberikan perbaikan hasil pengenalan. Secara umum pengenalan dengan menggunakan algoritma genetika belum mampu menyaingi tingkat pengenalan dengan menggunakan keseluruhan eigen (full eigen). "
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2004
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
M. Faisal Reza
"Seiring perkembangan teknologi, pemanfaatan dari pengembangan ilmu pengetahuan tersebut harus selalu ditingkatkan. Khususnya dalam hal menciptakan keamanan dan ketertiban di Indonesia. Sementara jumlah proporsi polisi dan warga yang tidak ideal, 1:900, Kepolisian Republik Indonesia masih menggunakan cara manual yang tidak efektif dalam mengidentifikasi pelaku kejahatan. Yaitu membuat sketsa wajah pelaku kejahatan dan mencari kemiripan wajah dengan citra-citra wajah yang ada di basis data Kepolisian. Sistem Identifikasi Buron bagian Alis dibuat untuk memperbaiki ketidakefektifan proses tersebut. Sistem Identifikasi Buron bagian Alis merupakan sub-bagian dari sistem Identifikasi Buron yang menggunakan bagian-bagian wajah lainnya untuk proses identifikasi. Untuk mencari yang paling efektif dalam mengukur kemiripan alis, maka penelitian ini membandingkan dua metode yang diganakan untuk melakukan ekstraksi. Yaitu Eigenface dan Klustering K-Means dengan Koreksi Gamma. Selain itu, penelitian ini juga membagi alis menjadi lima kategori, tebal, tipis, sambung, normal, dan sedang. Citra wajah yang digunakan berasal dari citra mahasiswa Universitas Indonesia (UI) angkatan 2007 sebanyak 500 buah. Citra alis diperoleh dari data wajah tersebut yang di crop secara manual. Keseluruhan data ini diperoleh dari Pusat Pengembangan Sistem Informasi (PPSI) UI. Setiap metode akan diuji dengan memberikan lima template dari lima kategori yang berbeda untuk diuji kemiripannya. Dari penelitian ini dihasilkan bahwa Eigenface memiliki akurasi sebesar 64.64%, sedangkan Klustering K-Means dengan Koreksi Gamma memiliki akurasi sebesar 74.75%. Diharapkan hasil penelitian ini bisa membantu kepolisian dalam menjaga keamanan dan ketertiban di Indonesia."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2008
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Haries Efrika
"Penelitian ini adalah kelanjutan dari penelitian-penelitian sebelumnya mengenai pengenalan wajah dan penentuan sudut pandang wajah 3D dengan metode Nearest Feature Line (NFL) dan optimasi ruang ciri lewat Algoritme Genetika (GA). Umumnya, ruang ciri dibentuk berdasarkan vektor-vektor eigen dengan nilai-nilai eigen terbesar. Fokus utama penelitian ini terletak pada pengkombinasian vektor eigen (bukan hanya yang terbesar) dalam membangun ruang ciri. Untuk menganalisis seberapa baik ruang ciri yang dibentuk lewat cara tersebut, dilakukan beberapa eksperimen pengenalan wajah dan penentuan sudut pandang wajah 3D pada tiga skema-sistem: Fully-KLT, Subset-1-KLT dan Subset-2-KLT. Tingkat pengenalan yang diperoleh mencapai 91,7% untuk pengenalan wajah pada skema Fully-KLT dan Subset-2-KLT, dan mencapai 87,5% untuk penentuan sudut pandang wajah pada skema Fully-KLT. Berdasarkan hasil eksperimen, diperoleh kesimpulan bahwa ruang ciri dengan kombinasi vektor eigen dapat lebih optimal dalam hal representasi data spasial. Namun, ruang ciri yang tersusun atas vektor-vektor eigen terbesar unggul dalam hal perbandingan antara tingkat pengenalan yang diberikan dengan pengurangan lebar dimensi. "
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2004
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lina
"Dalam makalah ini, penulis mengajukan metodologi baru dalam sistem pengenalan wajah 3-D dengan menggunakan penambahan garis ciri pada metode perhitungan jarak terpendek dalam ruang ciri. Penambahan garis ciri ini dilakukan dengan memperbanyak jumlah garis ciri tanpa menambahkan titik ciri baru, dengan membentuk sebuah garis ciri baru dari setiap titik ciri terhadap setiap garis ciri yang dibentuk dari setiap dua buah titik ciri. Dengan penambahan garis ciri ini, sistem akan memperoleh tambahan informasi variasi ciri obyek, sehingga tingkat pengenalan sistem dapat meningkat.
Dalam makalah ini, penulis juga mengembangkan metode TK-LSebagian1 dan TK-LSebagian2 sebagai metode untuk mentransformasikan citra wajah 3-D dari ruang citra spatial ke dalam representasi ruang eigennya. Data percobaan dalam penelitian menggunakan citra wajah orang Indonesia dalam berbagai sudut pandang pengamatan dan ekspresi. Pengujian terhadap sistem dilakukan untuk mengenali wajah dengan sudut pandang pengamatan yang berbeda dengan citra wajah yang dilatihkan sebelumnya. Hasil penelitian menunjukkan bahwa tingkat pengenalan tertinggi akan diperoleh sistem dengan menggunakan TK-LSebagian2 dan metode penambahan garis ciri yaitu sebesar 99.17%.

3-D Face Recognition System using Additional Feature Lines in Nearest Feature Line Method in Eigenspace Representation. In this paper, the authors propose a new method in 3-D face recognition system using additional feature lines in Nearest Feature Line method, called the Modified Nearest Feature Line method. The additional feature lines can be acquired by projecting each feature point to other feature lines in the same class without increasing the number of feature points. With these additional lines, the system will have the ability to capture more variations of face images, so it can increase the recognition rate of the system.
The authors also propose KL-TSubspace1 and KL-TSubspace2 as methods in transforming the 3-D face images from its spatial domain to their eigenspace domain. The experiments use the 3-D human faces of Indonesian people in various expressions and positions. Then, the system is applied to recognize unknown face images with different viewpoints. Experimental results shown that the system using KL-TSubspace2 and Modified Nearest Feature Line method can have the highest recognition rate of 99.17%."
Depok: Lembaga Penelitian Universitas Indonesia, 2003
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
"The analysis of HOS (High Order Statistics) are expexted to provide a richer description about data in parametric features for the purpose of pattern recognition of the data of an object or event. The higher order analysis of HOS will give the more candidates of feature parameter that can be selected for utilization...."
Artikel Jurnal  Universitas Indonesia Library
cover
cover
cover
Rangkuti, Farania Gama Ardhina
"Tugas akhir ini menguji dan menganalisa perbandingan antara metode Sparse Representation baik melalui algoritma Lasso dan algoritma Primal-Dual untuk minimisasi L1, dengan metode Eigenface dalam sistem pengenalan wajah berbasis komputer. Komponen yang diperbandingkan adalah tingkat akurasi yang dicapai dan tingkat kecepatan yang digunakan kedua metode. Hasil pengujian menunjukkan bahwa metode Sparse Representation melalui algoritma Lasso memiliki tingkat akurasi yang paling baik dan stabil, serta memiliki tingkat efisiensi terbaik dalam waktu komputasinya.

This study tests and analyses two methods of face recognition, namely Sparse Representation via both Lasso algorithm and Primal-Dual algorithm for L1 minimisation, and Eigenface, in terms of their level of accuracy and level of resource efficiency. Test results conclude that Sparse Representation method is more stable and has a better level of accuracy and resource efficiency."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Vera Mukty
"Tugas Akhir ini membahas pengembangan sistem pengenalan wajah yang menggunakan metode Voting. Pada sistem ini digunakan metode Eigenface untuk melakukan ekstraksi ciri wajah, dan metode Jarak Euclidean untuk mengukur tingkat kemiripan antar citra wajah. Berdasarkan hasil pengamatan dari penggunaan metode Eigenface dan Jarak Euclidean tersebut, belum tentu citra wajah yang memiliki Jarak Euclidean terkecil adalah milik subyek yang sama dengan citra wajah input.
Pada tugas akhir ini dikembangkan metode Voting untuk mengolah n-top citra wajah hasil. Melalui metode Voting, setiap citra wajah pada n-top citra wajah hasil akan memberikan kontribusi nilai pada subyek, dan subyek yang memiliki nilai terbesar akan keluar sebagai hasil.

The focus of this study is the development of face recognition system using Voting method. This system use Eigenface method to exctract face feature, and Euclidean Distance method to meassure the similarity level between face images. According to the result of the implementation of Eigenface method and Euclidean Distance method, face image with the smallest Euclidean Distance to face image input is not always represent the same subject.
In this study Voting method is developed to process n-top face image result. In Voting method, every face image on n-top face image result will give added value for subject, and the subject with the biggest value will becoming the result."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2008
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>