Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 115034 dokumen yang sesuai dengan query
cover
Sipayung, Sandhy Putra Pangidoan
"Aluminium merupakan salah satu material logam yang banyak digunakan serta dikembangkan pada berbagai macam aplikasi. Untuk meningkatkan kualitas aluminium, baik sifat fisik maupun mekanisnya, dilakukan beberapa perlakuan terhadap aluminium tersebut. Salah satu proses yang dilakukan adalah dengan rekayasa permukaan melalui proses anodisasi. Dalam proses anodisasi, pada permukaan aluminium akan terbentuk lapisan aluminium oksida yang amat keras dan tahan terhadap korosi.
Saat ini pengembangan proses anodisasi dikembangkan dalam pengetahuan tentang nanoteknologi. Melalui proses anodisasi yang dilakukan diharapkan lapisan yang dihasilkan memiliki kebaikan sifat-sifat mekanis seperti ketebalan, kekerasan, dan karakteristik diameter pori yang sesuai agar nantinya dapat digunakan pada aplikasi nanoteknologi seperti pembuatan carbon nanotube, nanoporous membrane, ataupun quantum dots. Salah satu parameter yang terpenting dan menentukan karakteristik permukaan hasil anodisasi adalah konsentrasi dan jenis elektrolit yang digunakan.
Penelitian kemudian dilakukan untuk memahami pengaruh dari besarnya penambahan konsentrasi elektrolit terhadap karakteristik dari lapisan oksida yang dihasilkan pada permukaan aluminium foil. Pada penelitian ini digunakan elektrolit tetap asam oksalat 0,5 M, serta variabel bebas penambahan asam sulfat 0,12 M, 0,24 M, 0,36 M, dan 0,48 M.
Hasil penelitian kemudian menunjukkan bahwa lapisan oksida yang dihasilkan benar merupakan lapisan Al2O3 dan dengan meningkatnya konsentrasi asam sulfat lapisan oksida yang dihasilkan akan memiliki permukaan yang semakin pekat warna kelabu-nya serta meningkat ketebalannya, hingga mencapai ketebalan tertinggi sekitar 14,51 µm pada konsentrasi 0,36 M namun menurun hingga ketebalan 9,95 µm pada konsentrasi 0,48 M. Kekerasan lapisan yang dihasilkan tidak valid karena alat pengujian yang digunakan kurang mendukung untuk jenis sampel yang digunakan.

Aluminium is one of the most common metal that has been used and developed in wide application. To enhance the quality of aluminium (physical and mechanical properties), some process have been done to the aluminium itself. One of the process is by changing its surface properties with anodizing process. In anodizing process, the aluminium oxide layer would be formed on the surface, and it has great hardness and good corrosion resistance.
At the present, the anodizing process has been developed for the knowledge of nanotechnology. By anodizing, it is hoped that the layer produced would have good mechanical properties like thickness, hardness, and good pore diameter characteristic. Then, with it good properties, it can be used in nanotechnology application like in the manufacturing of carbon nanotube, nanoporous membrane, and quantum dots. One of the most important parameter to the characteristic of the anodizing surface layer is the use of electrolyte.
This experiment was conducted to study the effect of increasing electolyte concentration to the characteristic of the oxide layer that produced at the surface of aluminium foil. The experiment used 0,5 M oxalic acid mixed with 0,12 M, 0,24 M, 0,36 M, and 0,48 M sulfuric acid.
The results showed that the oxide layer was Al2O3 layer. With the increase of sulfuric acid concentration, the oxide layer would be darker in the colour of gray and has some increasing in thickness. The highest thickness was about 14,51 µm in the addition of 0,36 M electrolytic concentration, but it is decreased to the 9,95 µm thickness when the concentration increased up to 0,48 M. The hardness of the layer could not be tested. The hardness testing machine used was not supported the kind of sample that were tested.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41736
UI - Skripsi Open  Universitas Indonesia Library
cover
Hutasoit, Martino R.
"Modifikasi permukaan aluminium secara elektrokimia merupakan suatu proses yang tengah berkembang pesat saat ini. Modifikasi permukaan secara elektrokimia pada awalnya lebih diarahkan pada peningkatan nilai ketahanan korosi, peningkatan kekerasan, dan juga peningkatan nilai estetika. Namun pada perkembangannya, salah satu proses elektrokimia, yaitu anodisasi, telah berkembang menjadi suatu proses modifikasi permukaan yang bertujuan untuk diaplikasikan pada teknologi berbasis nanoteknologi. Pemanfaatan lapisan oksida pada permukaan aluminium hasil proses anodisasi dilakukan dengan memanfaatkan pori (porous anodic alumina) yang terbentuk sebagai template pada pembuatan material yang berbasis pada nano teknologi seperti quantum-dot arrays, photonic crystals, magnetic memory arrays, nanowire dan berbagai alat mikroelektronik lainnya.
Penelitian ini bertujuan untuk mengetahui pengaruh perubahan konsentrasi larutan elektrolit terhadap ketebalan lapisan oksida yang terbentuk pada permukaan aluminium. Penelitian dilakukan dengan menggunakan sampel logam berupa aluminium foil (pure aluminium, 96.49%Al) dengan permukaan anodisasi sebesar 2X2 cm. Larutan elektrolit yang digunakan adalah asam oksalat dengan variasi konsentrasi 0.4 M, 0.5 M, 0.6 M. Tegangan pada proses adalah 32.5 Volt, temperatur dijaga pada rentang 4°C - 16°C, dan diaduk dengan menggunakan magnetic stirrer 500 rpm.
Hasil yang diperoleh melalui penelitian ini adalah bahwa tidak terjadi perubahan warna yang signifikan pada proses anodisasi dengan larutan asam oksalat. Nilai ketebalan lapisan oksida yang terbentuk akan semakin meningkat pada peningkatan konsentrasi asam oksalat. Nilai kekerasan pada sampel aluminium foil tidak dapat dilakukan dengan menggunakan metode microhardness tester.

Modification of aluminum surface with electrochemistry methods are developing rapidly nowadays. This surface modification were initially intended to increase the corrosion resistance, hardness, properties and improving the aesthetic appearance of aluminum. Recently, one of these electrochemistry methods, anodizing, were developed into one of the surface modification that can be applied in nanotechnology. Oxide layer which formed by anodizing process in the aluminum surface could be used as template for microelectronic nanotechnology material such as quantum-dot arrays, photonic crystals, magnetic memory arrays, nanowire because of it porous anodic alumina texture.
This research is conducted to found the effect of electrolyte concentration changes on thickness of oxide layer formed in aluminum surface. This research is carried out with aluminum foil sample (pure aluminum, 96.49% Al) with anodizing surface measured 2X2 cm. Electrolyte which used in this research is oxalic acid with concentration variation 0.4 M, 0.5 M, 0.6 M. This process using 32.5 Volt potential, temperature were kept in range of 4°C - 16°C, and the electrolyte were stirred electromagnetically at 500 rpm.
The result from this research shows that the colour of oxide layer by anodizing of aluminum in oxalic acid solution was transparent. By anodizing in oxalic acid, the thickness of formed oxide layer was dependent with the increase of concentration. Hardness testing on aluminum foil or oxide layer could?nt use to obtain hardness number in this research.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41633
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhamad Anton Eka Sakti
"Saat ini nanoteknologi berkembang dengan sangat pesat karena menghasilkan sifat yang menarik dan berbeda dengan teknologi yang dihasilkan dalam ukuran makroskopis. Produk-produk nanoteknologi berbasis nanostructure materials telah banyak dikaji dan dikembangkan, beberapa diantaranya adalah carbon nanotube, quantum dots, dan nano porous membrane. Sintesis nanostructure materials tersebut dapat dilakukan dengan template nano porous aluminum oxide hasil proses anodisasi. Sifat dan struktur nanoporous aluminum oxide tersebut sangat dipengaruhi oleh beberapa variabel proses anodisasi seperti waktu anodisasi, jenis dan konsentrasi larutan elektrolit, tegangan dan rapat arus, dan juga temperatur.
Pembuatan nano porous aluminum oxide dari aluminium foil untuk aplikasi nanostructure materials telah dilakukan dengan metoda anodisasi. Proses anodisasi dilakukan dengan kenaikan temperatur 10 °C, 20 °C, dan 30 °C dalam campuran larutan asam sulfat 3 M dan asam oksalat 0,5 M, pada kondisi tegangan 15 volt, dan waktu anodisasi 30 menit. Pengamatan diameter pori dilakukan dengan alat FESEM sedangkan pengukuran ketebalan dilakukan dengan alat SEM. Hasil pengamatan menunjukkan bahwa pada kondisi temperatur 10 °C dan 20 °C tidak terbentuk lapisan nano porous alumina sedangkan pada temperatur 30 °C terbentuk nano porous dengan keteraturan near-ordered dengan diameter ratarata 25 nm. Pengujian ketebalan oksida menunjukkan bahwa semakin tinggi temperatur menyebabkan kenaikan ketebalan rata-rata oksida. Ketebalan lapisan oksida mengalami kenaikan berturut-turut 351 nm, 652 nm, dan 770 nm pada temperatur 10 °C, 20 °C, dan 30 °C.

Recently, nanotechnology grows fast because it develops interesting features and different from technology produced on macroscopic scale. Nanotechnology products like nanostructure materials have been studied and developed. Some of them are carbon nanotube, quantum dots, and nano porous membrane. Fabrication of nanostructure materials can be done by template of nano porous aluminum oxide from anodizing process. Properties and structure of the nano porous aluminum oxide was influenced by several variables from anodizing process like time, type and concentration of solution, voltage and current density, and temperature.
Fabrication of nano porous aluminum oxide from aluminum foil for nanostructure materials application have been done from anodizing process in this research. Anodizing process was done on different temperature 10 °C, 20 °C, and 30 °C in mixing solution of sulfuric acid 3 M and oxalic acid 0.5 M, voltage 15 volt, anodizing time 30 minute. Observation of pores diameter was done by FESEM and measurement of oxide thickness was done by SEM. The result shows that there is no formation of porous alumina on temperature 10 °C and 20 °C. In other hand, there is formation of near-ordered nano porous aluminum oxide on temperature 30 °C with 25 nm average diameters. Measurement of thickness show that oxide thickness increases when temperature is raised. Oxide film thickness increases 351 nm, 652 nm, and 770 nm on temperature 10 °C, 20 °C, and 30 °C, respectively.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41677
UI - Skripsi Open  Universitas Indonesia Library
cover
Donnie Indrawan
"Aluminium 2024 (Al 2024) merupakan salah satu jenis paduan aluminium komersil dengan tembaga sebagai paduan utamanya. Jenis paduan ini sudah sejak lama digunakan dalam industri otomotif, penerbangan, dan militer. Keberadaan unsur Cu sebagai paduan utama memberikan efek penguatan pada segi mekanis tetapi melemahkan sifat korosinya. Anodisasi merupakan salah satu metode perlindungan aluminium paduan dari korosi menggunakan prinsip elektrokimia yang cepat, sederhana dan ekonomis. Variasi tegangan dan waktu dilakukan untuk melihat pengaruh parameter terhadap ketebalan serta ketahanan korosi Al 2024. Proses anodisasi dilakukan pada larutan H2SO4 30% pada temperatur ruang.
Hasil dari material anodisasi kemudian diuji pada medium korosif NaCl 3,5% selama 6 hari melalui proses immersion test. Ketebalan lapisan oksida paling efektif diperoleh pada anodisasi dengan parameter tegangan 15 V dan waktu 10 menit. Sebagian besar sampel uji menunjukkan trend yang sama dan indikasi terjadinya korosi sumuran (pitting corrosion) disertai munculnya endapan pada permukaan. Perlakuan anodisasi yang memberikan proteksi berupa lapisan oksida dibuktikan dengan kehadiran fasa α-Al2O3 and ɣ-Al2O3 dalam pengujian XRD. Pengamatan SEM dan mikroskop optik memperlihatkan penampakan permukaan Al 2024 setelah 6 hari immersion test pada larutan NaCl 3,5%.

Aluminium Alloy 2024 (Al 2024) is one of commercial alloy with copper as the main alloy. This alloy has been used in many industrial application such as automotive, aerospace, and military. Copper as a major alloying elements gives a mechanical strengthening effect but weaken the corrosion resistance. Anodizing is fast, simple, and economical method to protect aluminium from corrosion with the principal of electrochemical. The variations of anodizing voltage and time have been done with 30% H2SO4 electrolyte at room temperature to analyze its influence on thickness and corrosion behaviour of Al 2024.
Results of anodizing were then tested by immerse the samples in 3,5% NaCl solution for 6 days. The thickness of the oxide layer is most effective with the parameters obtained in anodizing voltage of 15 V and 10 minutes. Most of samples show the similar trend and indications of pitting corrosion along with the presence of deposition on its surface. Anodizing proccess gives the protection layer aluminium oxide which is proved by the presence of α-Al2O3 and ɣ-Al2O3 phase in XRD testing. SEM and optical microscope observation show the surface appearence of Al 2024 after immersion test for 6 days in 3,5% NaCl solution.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S65455
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zaki Vernando
"Anodizing adalah salah satu teknik yang digunakan untuk meningkatkan ketahanan korosi logam aluminium. Sayangnya, teknik ini memiliki beberapa kelemahan yang dapat menghambat pembentukan film oksida anodik dalam logam tersebut. Untuk mengatasi masalah ini, banyak senyawa organik telah ditambahkan ke larutan elektrolit yang digunakan dalam proses anodisasi ini. Penambahan senyawa organik ini bertujuan untuk meningkatkan laju pertumbuhan dan karakteristik film oksida anodik yang terbentuk nantinya.
Dalam penelitian ini, pengaruh penambahan Ethylene Glycol (EG) ke sifat-sifat film oksida anodik dalam lingkungan korosif dan laju pertumbuhan film oksida anodik diselidiki, yaitu dengan merekam kurva tegangan-waktu dari proses anodisasi, mengamati penampilan permukaan, mengamati bentuk morfologis film, mengukur ketebalan film, mengukur kekerasan film, dan menguji ketahanan film dalam lingkungan korosif. Proses anodisasi dilakukan pada arus konstan, yaitu 300 A / m2 dalam larutan 2M H2SO4 dengan suhu di bawah 10°C. Proses anodisasi dilakukan dalam tiga waktu yang berbeda, yaitu 30 menit, 45 menit, dan 60 menit. EG ditambahkan ke larutan elektrolit dengan konsentrasi 0, 10, 20, hingga 30%.
Hasil penelitian ini menunjukkan bahwa penambahan EG meningkatkan laju reaksi elektrokimia pada permukaan logam aluminium yang dibuktikan dengan peningkatan kemiringan pada kurva tegangan-waktu, yaitu dari 0,1 V / menit menjadi 0,6 V / menit sebagai EG konsentrasi meningkat dalam larutan. Lamanya waktu yang digunakan dalam proses anodisasi dan jumlah komposisi EG dalam larutan elektrolit mempengaruhi tingkat ketebalan film dan juga kekerasan film yang terbentuk. Karakterisasi awal sampel menunjukkan bahwa sampel yang dianodisasi dalam 45 menit memberikan hasil yang lebih baik dibandingkan yang lain. Uji ketahanan korosi yang dilakukan pada sampel anodisasi dalam waktu 45 menit menunjukkan bahwa semakin besar komposisi EG dalam larutan elektrolit membuat film oksida anodik yang terbentuk menjadi semakin lemah terhadap serangan korosi.

Anodizing is one of the techniques used to increase aluminum metal corrosion resistance. Unfortunately, this technique has several disadvantages that can inhibit the formation of anodic oxide films in the metal. To overcome this problem, many organic compounds have been added to the electrolyte solution used in this anodizing process. The addition of organic compounds aims to increase the growth rate and characteristics of anodic oxide films formed later.
In this study, the effect of adding Ethylene Glycol (EG) to the properties of anodic oxide films in a corrosive environment and the rate of growth of anodic oxide films was investigated, namely by recording the voltage-time curve of the anodizing process, observing the surface appearance, observing the morphological shape of the film, measuring film thickness, measure film hardness, and test film resistance in corrosive environments. The anodizing process is carried out at a constant current, which is 300 A / m2 in a 2M H2SO4 solution with temperatures below 10°C. The anodizing process is carried out in three different times, namely 30 minutes, 45 minutes and 60 minutes. EG is added to the electrolyte solution at concentrations of 0, 10, 20, up to 30%.
The results of this study indicate that the addition of EG increases the rate of electrochemical reaction on the surface of the aluminum metal as evidenced by an increase in the slope of the voltage-time curve, ie from 0.1 V / min to 0.6 V / min as the EG concentration increases in solution. The length of time used in the anodizing process and the amount of EG composition in the electrolyte solution affect the level of film thickness and also the hardness of the film formed. Initial characterization of the sample shows that the anodized sample in 45 minutes gives better results than the others. Corrosion resistance tests conducted on anodized samples within 45 minutes showed that the greater the composition of EG in the electrolyte solution made the anodic oxide film formed became weaker against corrosion attack.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nadya Aryani Putri
"Titanium adalah salah satu material yang paling populer untuk digunakan sebagai material implan karena memiliki sifat biokompatibilitas yang baik karena adanya lapisan oksida tipis di permukaannya yang secara spontan terbentuk, dimana lapisan oksida ini menyebabkan Titanium menjadi pasif sehingga tidak mengalami korosi saat diaplikasikan menjadi material implan. Namun material Titanium ini tergolong sebagai material bio-inert, sehingga masih kurang mendukung dalam pertumbuhan dan perkembangan tulang (osseointegrasi) jika dibandingkan dengan material yang tergolong sebagai bio-active. Salah satu cara untuk meningkatkan biokompatibilitas dari Titanium adalah dengan mengasarkan permukaan, karena berdasarkan studi yang telah dilakukan sel cenderung lebih dapat menempel dan berkembang pada material dengan topografi permukaan yang lebih kasar. Anodisasi adalah salah satu cara yang efektif dan mudah untuk meningkatkan kekasaran permukaan Titanium, sekaligus memproduksi lapisan warna yang dapat digunakan untuk identifikasi material implan. Sehingga pada penelitian ini akan dilakukan anodisasi pada Ti-6Al-4V untuk menghasilkan lapisan warna sekaligus mengevaluasi pengaruh parameter yang diaplikasikan terhadap kekasaran permukaan serta biokompatibilitasnya. Anodisasi dilakukan dalam elektrolit H3PO4 dengan konsentrasi 0.5 M dan 1 M menggunakan tegangan 30, 70, dan 120 V untuk mengevaluasi kekasaran permukaan serta efeknya dalam meningkatkan biokompatibilitas Ti-6Al-4V. Selain itu juga dihasilkan Ti-6Al-4V hasil anodisasi pada tegangan 10 hingga 90 V untuk mengetahui pengaruh tegangan terhadap warna yang dihasilkan. Hasil dari anodisasi ini dievaluasi secara makro, mikro menggunakan SEM, komposisi lapisan oksida yang dihasilkan menggunakan EDS, kekasaran permukaannya menggunakan Accretech Surfcom 2900SD3, dan ketahanan goresnya menggunakan scriber yang kemudian diamati dengan mikroskop optik. Hasil yang didapatkan menunjukan kenaikan kekasaran permukaan pada Ti-6Al-4V yang telah dianodisasi, dimana dengan meningkatnya tegangan dan konsentrasi elektrolit yang diaplikasikan maka kekasarannya juga meningkat.. Lalu hasil EDS juga menunjukan adanya inkorporasi ion Fosfor dalam lapisan oksida. Mekanisme terkait hasil yang didapatkan dan pengaruhnya terhadap biokompatibilitas akan lebih lanjut dijelaskan dalam hasil penelitian ini.

Titanium is one of the most popular materials to be used as implant material because it has good biocompatibility due to the presence of a thin oxide layer that spontaneously forms on its surface, this oxide layer causes Titanium to become passive so it does not corrode when being applied as implant material. But Titanium is only classified as a bio-inert material and still less capable in supporting bone growth and its development (osseointegration) when compared to bio-active material. One way to improve the biocompatibility of Titanium is to roughen its surface, because based on studies that have been carried out cells tend to be more adhere and develop in materials with a more rough surface topography. Anodization is one of the effective and easy ways to increase surface roughness of Titanium, while producing a colour oxide film that can be used to identify implant material. Thus, this study will carried out anodization of Ti-6Al-4V to produce a color oxide film while evaluating the effect of parameters applied to its surface roughness and biocompatibility. Anodization was carried out in H3PO4 electrolytes with concentrations of 0.5 M and 1 M using voltages of 30, 70 and 120 V to evaluate surface roughness and its effect in increasing Ti-6Al-4V biocompatibility. Besides that, this study also anodized Ti-6Al-4V at 10 to 90 V to find out the effect of voltage on the color produced. The results of this investigation were evaluated by macro-image, SEM, EDS, Accretech Surfcom 2900SD3, and its scratch resistance using scriber made out of carbide. The results obtained show an increase in surface roughness in anodised Ti-6Al-4V, where as the voltage and electrolyte concentration increase, the surface roughness also increases. Then, the EDS results also show the presence of incorporation of Phosphorus ions in the oxide layer produced by anodization. The mechanism related to the results obtained and its effect on biocompatibility will be further explained in the results of this study."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nabila Ramadhanti
"ABSTRAK
Kelemahan material implan Ti-6Al-4V adalah bersifat ­bio-inert, sehingga tidak mendukung reaksi jaringan/sel tubuh dengan implan. Penelitian ini bertujuan meningkatkan tendensi pelekatan sel osteoblas pada permukaan implan Ti-6Al-4V melalui modifikasi biokompatibilitas dengan meningkatkan kekasaran permukaan sehingga sel di sekitar implan berkembang. Menggunakan metode anodisasi maka dapat mendukung pula tujuan coloring implan guna memudahkan identifikasi implan ketika pemasangan. Sebelum anodisasi, sampel dipreparasi hingga permukaanya mirror like dan bersih dari kotoran lemak. Anodisasi menggunakan elektrolit H2SO4 0.5 M dan 1 M, pada variasi tegangan 30 V, 50 V, dan 70 V selama 5 menit. Pengaruh tegangan dan konsentrasi elektrolit terhadap kekasaran permukaan diidentifikasi melalui pengujian Surfcom, pengamatan morfologi dan karakterisasi unsur di permukaan dan cross section lapisan TiO2 dengan SEM-EDS, dan kekuatan penempelan lapisan oksida diuji dengan uji ketahanan gores dan diamati dengan OM. Hasil penelitian menunjukkan bahwa semakin tinggi tegangan maka lapisan oksida warna semakin tebal dengan kekasaran permukaan dan ketahanan gores yang lebih tinggi, sehingga hasilnya menunjukkan bahwa kekerasan lapisan oksida meningkat. Fitur kekasaran permukaan didapatkan dari tekstur berupa lembah dan puncak dengan adanya mikropori TiO2 yang terbentuk karena reaksi evolusi oksigen dan inkorporasi ion sulfat dari elektrolit, sehingga biokompatibilitas implan meningkat dengan mekanisme mechanical interlocking antara implan dengan jaringan/sel osteoblas.

ABSTRACT
Ti-6Al-4V implants are bio-inert, it doesnt support tissues or cells reaction with implants. This study was aimed to increase the tendency of attaching osteoblasts to the surface of implants through biocompatibility modification by increased surface roughness, also to get colored implants to facilitate identification of implants when the implants going to be installed, by anodization method. The sample was prepared until had mirror-like surfaces and cleaned from dirt. Anodization used 0.5 M and 1 M H2SO4 electrolytes, 30 V, 50 V, and 70 V for 5 minutes. The effect of voltage and electrolyte concentration on surface roughness was identified through Surfcom, morphological and elemental characterization with SEM-EDS, and the attachment strength of the oxide layer tested by scratch resistance test and observed with OM. The results indicated that the higher the voltage, the color oxide layer gets thicker with higher surface roughness and scratch resistance, so those results indicated that the oxide layers hardness increased. Surface roughness features was obtained by texture of valleys and peaks with TiO2 micropores caused by oxygen evolution reactions and incorporation of sulfate ions from electrolytes, so that implants biocompatibility can be increased by mechanical interlocking mechanism between implants and osteoblast bone cells / tissue."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Adyutatama
"Perkembangan teknologi pelapisan logam dengan metode anodisasi sangat berkembang dewasa ini, sehingga penelitian dalam bidang anodisasi untuk aplikasi material porous juga mengalami perkembangan yang cepat. Proses anodisasi dengan material aluminium foil dilakukan dengan media larutan asam oksalat 0,2 M dilakukan dengan variasi terhadap temperatur dan tegangan menghasilkan lapisan oksida yang beragam. Tegangan yang diaplikasikan yaitu tegangan konstan 10, 40, dan 70 V dengan variasi temperatur 4, 22, dan 40 _C menghasilkan perbedaan tebal dan bentuk permukaan oksida pada permukaan aluminium foil. Penggunaan tegangan yang tinggi dan temperatur yang rendah diharapkan menghasilkan lapisan aluminium oksida dengan pori yang berukuran kecil sehingga membran porous dapat dibentuk. Pada pengamatan menggunakan SEM dengan perbesaran hingga 10000 X didapat garis gelap terang searah rolling. Garis yang berwarna gelap mengindikasikan lapisan porous yang telah tergerus. Pada potongan melintang didapat ketebalan lapisan aluminium oksida mulai dari 0,91 hingga 11,56 _m. Indikasi pori berukuran besar terlihat pada proses anodisasi dengan variasi temperatur 22 _C dengan tegangan 40 V yaitu sebesar 2 - 8 _m dengan tebal 8.81 _m dan pada variasi 40 _C dengan tegangan 10 V yaitu sebesar 400 nm dengan tebal 5,38 _m

The development of metal coating technology with anodizing method is unfolding now days, so that research in anodizing for applied as porous materials also flourish rapidly. Anodized process using aluminium foil materials with Oxalic acid solution 0.2 M have varieties in oxide layer result. Voltage that applied are constant voltage 10, 40, 70 V with different fix temperatures 4, 22, and 40 _C resulting difference oxide layer thickness in aluminium foil surface. Using high voltage and low temperature, we expect that small oxide pore diameter is created, so porous membrane can be formed. Observation using SEM up to 10000X magnification, the light and dark layer in the line of rolling direction is visible. Dark layer indicate porous layer that had been solute. In the cross section area, the aluminium oxide layers are observed resulting 0.91 to 11.56 _m thick. Wide pore indication had shown in 22 _C and voltage 40 V anodizing process is 2 - 8 _m wide and 8.81 ??m thick and in 40 _C and voltage 10 V is 400 nm wide and 5.38 thick."
Depok: Fakultas Teknik Universitas Indonesia, 2009
T41135
UI - Tesis Open  Universitas Indonesia Library
cover
Vika Rizkia
"Proses anodisasi pada aluminium menghasilkan struktur fenomenal berupa oksida logam yang terkenal dengan istilah Anodic Aluminum Oxide (AAO). AAO sangat diperlukan untuk meningkatkan daya adhesi pada proses pelapisan selanjutnya baik pada aluminium dan paduannya maupun komposit aluminium. Hal tersebut terjadi akibat adanya ikatan saling kunci antara lapisan oksida hasil anodisasi (AAO) dengan pelapis berikutnya. Morfologi pori pada AAO dapat dengan mudah dimodifikasi melalui perubahan parameter anodisasi. Namun, sayangnya penelitian-penelitian sebelumnya belum menyediakan informasi apapun mengenai pengontrolan diameter pori. Sedangkan seperti yang kita ketahui bahwa perbedaan aplikasi yang diinginkan membutuhkan diameter pori yang berbeda pula.
Oleh karena itu guna mendapatkan diameter pori dengan ukuran tertentu maka pemilihan parameter proses anodisasi yang tepat sangatlah penting. Untuk memenuhi kebutuhan tersebut, dalam penelitian ini akan dihasilkan persamaan empiris yang dapat memprediksi ukuran diameter dan densitas pori AAO yang terbentuk hasil anodisasi dengan berbagai parameter tertentu agar dapat digunakan dalam aplikasi yang sesuai.
Tujuan utama penelitian ini adalah pengembangan persamaan empiris yang menggambarkan hubungan konsentrasi oksalat, tegangan dan waktu anodisasi terhadap diameter pori. Namun penelitian ini juga menganalisis mekanisme pembentukan, karakteristik, dan ketahanan korosi lapisan terintegrasi pada Al7075/SiC. Serta menganalisis pengaruh konsentrasi, temperatur, dan resistivitas larutan elektrolit, dan tegangan anodisasi terhadap diameter dan densitas pori AAO pada aluminium foil.
Proses anodisasi Al7075/SiC dilakukan dalam larutan asam sulfat 16% H2SO4 dengan rapat arus 15, 20, 25 mA/cm2 pada 25, 0, -25oC selama 30 menit. Selanjutnya dilakukan proses sealing dalam larutan CeCl3.6H2O + H2O2 pada temperatur ruang dengan pH 9 selama 30 menit. Proses anodisasi pada aluminium foil dilakukan dalam larutan 3 M H2SO4 + 0,5 M; 0,7 M; dan 0,9 M H2C2O4, dan 0,3; 0,5; 0,7 M H2C2O4 selama 40-60 menit. Proses anodisasi dilakukan pada tegangan konstan 35, 40, dan 45 V untuk larutan asam oksalat dan 15 V untuk larutan campuran.
Pengamatan dan evaluasi morfologi lapisan pori hasil anodisasi dilakukan menggunakan alat FE-SEM (Field Emission Scanning Electron Microscope), ketahanan korosi material diinvestigasi menggunakan pengujian polarisasi dan EIS, sedangkan analisa kualitatif terhadap morfologi pori (diameter dan densitas) pada AAO menggunakan perangkat lunak ImagePro. Pengembangan persamaan empiris menggunakan metode derajat terkecil dan permukaan respon.
Proses terintegrasi yang diaplikasikan pada komposit Al7075/SiC pada temperatur anodisasi 0 oC menghasilkan terbentuknya deposit bulat kaya cerium dengan diameter 64 nm ( 3 nm) yang menutupi seluruh permukaan lapisan oksida dan rongga secara efektif. Proteksi terintegrasi anodisasi dan pelapisan cerium meningkatkan ketahanan korosi hingga 4 order perbesaran dibandingkan tanpa perlindungan akibat terjadinya ikatan saling kunci antara kedua lapisan tersebut.
Peningkatan konsentrasi larutan elektrolit asam oksalat, temperatur, tegangan dan waktu celup anodisasi dalam larutan 0,3; 0,5; dan 0,7 M mengakibatkan peningkatan diameter pori permukaan pada AAO. Sedangkan, penambahan asam sulfat dalam asam oksalat menghasilkan pori dengan morfologi diameter pori yang jauh lebih halus dan densitas pori yang jauh lebih besar. Secara umum, densitas pori hanya tergantung pada diameter pori hasil anodisasi, dimana peningkatan diameter pori menghasilkan densitas pori yang semakin menurun. Persamaan empiris hubungan antara tiga faktor anodisasi (konsentrasi asam oksalat, tegangan, dan waktu anodisasi) dengan diameter pori hasil dari penelitian ini adalah : Dp = 0,140625 MVt + 0,33125 MV ? 523542 Mt + 35,64583 M ? 0,04006 Vt + 0,685764 V +1,792431 t ? 42,5053 (derajat terkecil) dan Dp = 33,3 ? 236,3 M ? 1,453 V + 0,3942 t + 7,60 MV (metode derajat satu)

Anodizing process in aluminum produces a phenomenal structure in form of metal oxide which is known as Anodic Aluminum Oxide (AAO). AAOis a very useful morfology to improve the adhesion properties for further coating in aluminum alloy and composite aluminum. This phenomenon is related to the presence of interlock bond between AAO and the next layer. The AAO morphology can be modified simply by varying anodizing parameters.
Therefore, selecting appropriate parameters plays an important role in order to obtain the desired pore size. Unfortunately, the preliminary studies did not provide any information on controlling the pore size and density (through increasing/decreasing the concentration of sulfuric acids, voltage, and duration of anodizing to determine pore diameter and density).
For that purpose, in this research some empirical models were built to predict the pore size produced by anodizing process in various parameters. The grand design if this research aims to develop empirical equations which predict the relationship between oxalic acid concentration, anodizing voltage and time to the pore diameter. However, this research also aims to analyze the formation mechanism and of the integrated layer on Al7075/SiC, as well as the enhancement of corrosion resistance resulted from the integrated layer. Moreover, the influence of various anodizing parameters, i.e. resistivity, concentration, temperature, and type of electrolyte on pore characteristics of AAOis also conducted in this study.
Anodizing process of Al7075/SiC was conducted in 16% H2SO4 solution in current densities 15, 20, 25 mA/cm2 at25, 0, -25oC for 30 minutes. Subsequently, cerium sealing process was carried out in CeCl3.6H2O+H2O2 at room temperature and pH 9 for 30 minutes. Anodizing of aluminum foil were carried out in 0,3; 0,5; 0,7M H2C2O4 solution and a mixture solution of 0.5M, 0.7M, and 0.9M H2C2O4 and 3M H2SO4 for 40-60 minutes. Anodizing processes were performed under potentiostatic conditions with constant potentials of 35, 40, and 45V for oxalic solution and 15 V for a mixture solution.
Morphology of AAO layer observations were performed using field emission scanning electron microscopy (FE-SEM) FEI Inspect F50, while the corrosion resistance of materials were investigated by means of polarization and EIS, and qualitative analysis of pore characteristics (pore diameters and densities) accomplised by ImagePro software.
The development of empirical equations using least square and response surface methods Integrated protection by conducting anodization at 0oC prior to cerium sealing in Al7075/SiC leads tothe formation of cerium spherical deposit in the diameter of 64 nm ( 3nm) which effectively covered most of the surface of oxide film as well as cavity. Moreover, this integrated protection enhanced four orders magnification of corrosion resistance than that of bare composite due to interlock bonding between the layers.
The increasing of electrolyte concentration and temperature, as well as voltage and duration of anodizing in 0.3; 0.5; dan 0.7 M oxalic acid leads to the increasing of pore diameter in AAO surface. While, the addition of sulfuric acid in oxalic acid provides much smaller pore diameters and higher pore densities at lower voltages than single electrolyte of oxalic acid. In general, pore density is only dependent on pore diameter, which decreases with the increases of pore diameter. The empirical equations built in this research are : Dp = 0,140625 MVt + 0,33125 MV ? 523542 Mt + 35,64583 M ? 0,04006 Vt + 0,685764 V +1,792431 t ? 42,5053 (least square) and Dp = 33,3 ? 236,3 M ? 1,453 V + 0,3942 t + 7,60 MV (first order model)
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
D2263
UI - Disertasi Membership  Universitas Indonesia Library
cover
Zandini Nurichi
"Fabricate through-hole porous anodic aluminum oxide (AAO) template were made by a two-step anodization method of an aluminum with purity 99,98% in 0,3 M oxalic acid at 45 V with 360 minutes of second anodization time. The effect of duration time on the second anodizing step, voltage and solution of the electrolyte on the porous oxide layer and influence of the pore opening on the structural as a template were studied in detail. Then, the prepared template was used as a template for fabricated of dense array of Cu by using electrochemical deposition process performed by direct current (DC). The composition of AAO was confirmed by x-ray diffraction (XRD) analyses and for the deposition of Cu were performed by energy dispersive x-ray spectroscopy (EDS). The structural features of nanowire were calculated by scanning electron microscopy (SEM) images and compared with the imaging of AAO template as parameter.

Fabrikasi templet Anodic aluminium Oxide (AAO) sebagai nanopori dilakukan dengan proses anodisasi dengan metode two-step anodization menggunakan alumunium dengan kemurnian 99,98 % pada larutan asam oksalat dengan konsentrasi 0,3 M pada voltase 45 V dan waktu anodisasi kedua sebesar 360 menit. Waktu anodisasi kedua dan voltase serta arus yang digunakan menjadi faktor utama dalam pembentukan ketebalan lapisan oksida dan diameter pori yang dihasilkan. Selain itu, pengaruh konsentrasi sangat berpengaruh dalam ketebalan templet AAO. Aplikasi templet AAO ini digunakan sebagai templet deposisi logam Cu, yaitu dengan cara elektrodeposisi dengan pada arus searah (DC). Digunakan pula X-ray diffraction (XRD) untuk melihat templet AAO dan komposisi Cu pada templet dikarakterisasi dengan energy dispersive x-ray spectroscopy. Untuk melihat morfologi nanopori pada cetakan AAO, dikarakterisasi dengan scanning electron microscopy (SEM)."
Depok: Universitas Indonesia, 2016
S64000
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>