Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 57651 dokumen yang sesuai dengan query
cover
Barkah Yusuf Widodo
"Tulisan ini berisi laporan hasil eksperimen pengenalan wajah tiga dimensi dengan sudut pandang vertikal-horisontal yang beragam. Eksperimen ini menggunakan Jaringan Syaraf Tiruan (JST) Hemispheric Structure of Hidden Layer (HSHL). HSHL adalah struktur JST dengan lapis tersembunyi berbentuk hemisfer. HSHL dirancang untuk mengenali obyek tiga dimensi dengan sudut pandang vertikalhorisontal beragam. Pelatihan dilakukan menggunakan metode-metode optimasi seperti penggunan fungsi kesalahan cross entropy dan penggunaan momentum. Pada tulisan ini juga, diaplikasikan langkah optimasi berupa modifikasi pada struktur lapis tersembunyi HSHL. Modifikasi dilakukan dengan menambahkan neuron-neuron antara di setiap ring hemisfer. Struktur turunan ini disebut HSHL multiplied. Eksperimen ini menyimpulkan bahwa HSHL dengan tipe jaringan multiplied memiliki performa lebih baik dibandingkan tipe normal dalam hal kecepatan pembelajaran. Tulisan ini juga menyimpulkan bahwa pelatihan dengan sudut pandang citra yang simetris memberikan hasil yang lebih baik."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2004
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nova Eka Diana
"Dengan meningkatnya jumlah kriminalitas seperti pencurian, perampokan, dan pembunuhan, tanggung jawab pihak kepolisian untuk menangkap pelaku kejahatan juga semakin berat. Salah satu data yang dimiliki pihak kepolisian adalah arsip foto dari para pelaku kejahatan. Semakin besar jumlah kejahatan, semakin besar pula jumlah arsip foto yang dimiliki kepolisian. Salah satu cara yang dilakukan untuk mengidentifikasi tersangka adalah dengan mencocokkan wajah tersangka dengan arsip foto yang dimiliki. Jika jumlah arsip foto sangat besar dan proses pencarian dilakukan secara manual, maka akan diperlukan waktu yang cukup lama dan kurang efisien.
Dalam Tugas Akhir ini, dikembangkan prototipe suatu sistem yang mampu melakukan pencarian citra wajah. Sistem ini disebut dengan Sistem Temu Kembali Citra Wajah. Sistem ini dikembangkan dengan menggunakan metode eigenface dan jarak euclidean. Metode eigenface digunakan untuk melakukan ektraksi ciri wajah yang penting dalam proses pencarian. Metode ini melakukan proyeksi dari ruang citra wajah dengan dimensi tinggi ke ruang ciri dengan dimensi yang lebih rendah. Jarak euclidean digunakan untuk mengukur nilai kemiripan antara dua citra wajah. Semakin kecil jarak antara dua citra wajah, semakin tinggi nilai kemiripan antara kedua citra wajah tersebut.
Sistem yang dikembangkan mampu menemukan citra wajah yang relevan terhadap citra masukan dengan tingkat precision rata-rata sebesar 87% terhadap basis data citra wajah yang digunakan. Eigenface mampu merepresentasikan ciri wajah secara keseluruhan dan tidak berkorespondensi dengan ciri wajah secara spesifik. Eigenface mampu melakukan ekstraksi ciri wajah dengan sederhana, cepat, dan eifisien. Sistem yang dihasilkan dari Tugas Akhir ini dapat digunakan oleh pihak kepolisian untuk mengidentifikasi pelaku kejahatan."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2007
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
I Gusti Agung Agastya Tarumawijaya
"

Berbagai metode pengembangan rekognisi citra wajah telah banyak dilakukan, berbagai metode seperti Deep Learning, Multilayer Perceptron sudah dilakukan. Metode Convolutional Neural Network juga sudah banyak dikembangkan untuk melakukan klasifikasi citra seperti rekognisi jenis bunga, hewan, hingga pendeteksian kecacatan sel. Convolutional Neural Network diharapkan mampu melakukan rekognisi citra wajah secara tiga dimensi. Operasi konvolusi sebagai bagian ekstraksi fitur pada Convolutional Neural Network, diharapkan dapat membantu bagian klasifikasi untuk melakukan tugasnya dengan lebih baik. Rekognisi citra wajah secara tiga dimensi ini sangat dibutuhkan, karena ketika kita ingin mendeteksi seseorang tanpa diketahui orang tersebut, maka dengan berbagai macam sudut hadap wajahnya sistem harus dapat mengidentifikasi orang tersebut. Untuk penelitian kali ini saya akan menggunakan dataset gambar wajah tiga dimensi yang akan digunakan sebagai klasifikasi parameter biometrik seseorang. Pada penelitian ini akan menganalisa tiap-tiap lapisan pada Convolutional Neural Network, serta melakukan perbandingan dengan Backpropagation Neural Network. Dan juga akan melakukan analisa dengan menggunakan citra wajah berderau.


Various methods of developing facial image recognition have been carried out, various methods such as Deep Learning and Radial Basis Function Neural Network have been carried out. Convolutional Neural Network methods have also been developed to carry out image classifications such as recognition of types of flowers, animals, and detection of cell defects. Convolutional Neural Network is expected to be able to recognize facial images in three dimensions. Convolution operations as a feature extraction part of the Convolutional Neural Network are expected to help the classification section to do their job better. Three-dimensional face image recognition is needed, because when we want to detect someone without knowing by the person, then with a variety of face angles, the system must be able to identify that person. For this research I will use a three-dimensional face image dataset that will be used as a classification of a persons biometric parameters. In this study, we will analyze each layer in the Convolutional Neural Network, do a comparison with Backpropagation Neural Network. And also will do the analysis by using a noisy face image.

"
Depok: Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
DP. Nala Krisnanda
"Mengemudi dalam keadaan mengantuk merupakan salah satu bentuk kelalaian dalam berkendara yang dapat membahayakan. Oleh karena itu, penelitian ini ditujukan untuk merancang dan membangun sebuah sistem pendeteksi kantuk yang mampu memperingatkan pengemudi apabila sudah berada pada kondisi yang memerlukan istirahat. Sistem yang dikembangkan berupa sebuah aplikasi Android yang memanfaatkan tiga jenis sensor yaitu kamera depan sebagai sumber data citra wajah dengan resolusi 480p, perangkat EEG portabel sebagai sumber data gelombang otak dan MiBand sebagai sumber data detak jantung. Data dari ketiga sensor ini selanjutnya akan digunakan sebagai input bagi sebuah model neural network untuk melakukan deteksi kantuk. Dari penelitian ini didapatkan hasil bahwa arsitektur 1D CNN lebih cocok digunakan sebagai model dalam sistem pendeteksi kantuk dibandingkan dengan LSTM. Interval waktu 4 menit digunakan pada sistem pendeteksi kantuk yang dikembangkan karena dinilai paling optimal untuk digunakan. Dengan menggunakan data dari sepuluh partisipan, model mampu mendapatkan validation accuracy sebesar 96.30%. Sedangkan dari 12 kali percobaan pengujian sistem pendeteksi kantuk yang dikembangkan, sistem mampu melakukan klasifikasi kantuk dengan tingkat akurasi sebesar 83.3%

 


Driving in a drowsy condition is one form of carelessness in driving that can be dangerous. Therefore, this research is intended to design and build a drowsy detection system that can warn the driver when they are in a condition that requires to rest. The system was developed in the form of an Android application that utilizes three types of sensors, which are the front camera as a source of face image with 480p resolution, portable EEG devices as a source of brainwaves data and MiBand as the source of heart rate data. Collected data from these three sensors will then be used as input for a neural network model to detect drowsiness. From this study it was found that the 1D CNN architecture is the most suitable to be used as a model in drowsiness detection systems compared to LSTM. A 4-minute time interval is used in the drowsy detection system that was developed because it was considered as the most optimal. By using data from ten participants, the model was able to get a validation accuracy of 96.30%. While from 12 trials of drowsiness detection system testing that was developed, the system can do drowsiness classification with an accuracy rate of 83.3%

 

"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rivki Hendriyan
"Penelitian ini melanjutkan dari penelitian sebelumnya mengenai pengenalan wajah tiga dimensi dengan sudut pandang vertikal-horisontal yang beragam. Penelitian ini menggunakan Jaringan Syaraf Tiruan (JST) Hemispheric Structure of Hidden Layer (HSHL). HSHL adalah struktur JST dengan lapis tersembunyi berbentuk hemisfer. Pada penelitian sebelumnya, informasi sudut pandang yang digunakan HSHL dalam proses pengujian diberikan secara manual dan penelitian tersebut memberikan hasil yang bagus.
Pada penelitian ini, penulis mencoba untuk membandingkan antara JST HSHL dengan sudut wajah diketahui sebelumnya dengan JST HSHL menggunakan interpolasi spline sebagai pengenal sudut wajah. Selain itu, penulis juga menggunakan Principal Component Analysis untuk ekstraksi ciri dari data masukan.
Penelitian ini menyimpulkan bahwa pengenalan wajah menggunakan JST HSHL dengan interpolasi spline sebagai pengenal sudut wajah memberikan tingkat pengenalan yang tidak jauh berbeda dengan JST HSHL yang sudut wajah diketahui. Oleh karena itu, kombinasi antara JST HSHL dengan interpolasi spline memungkinkan untuk diterapkan dalam aplikasi dunia nyata.

This research continues from previous researches about 3D face recognition with variation of vertical-horizontal angle face. This research uses Hemispheric Structure of Hidden Layer (HSHL). In the previous research, angle face information is known by the system and the recognition rate is high.
In this research, writer try to compare HSHL with known angle face and HSHL with spline interpolation to guess the angle face. Writer also uses Principal Component Analysis to extract features from input data.
This research concludes that HSHL with spline interpolation to guess the agle face yields a competitive result with HSHL with known angle face. Therefore, combination of HSHL and spline interpolation is possible to be applied in the real world."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Oka Uliandana
"ABSTRAK
Pengenalan wajah merupakan salah satu topik pada ilmu pengolahan citra yang sering dikembangkan. Salah satu dari metode pengenalan wajah ialah dengan menggunakan jaringan saraf tiruan. Jaringan saraf tiruan mengenali wajah-wajah dengan cara mempelajari wajah-wajah yang disediakan untuk pembelajaran. Metode pembelajaran yang digunakan pada tulisan ini ialah dengan lapisan tersembunyi berbentuk hemisfer yang merupakan pengembangan dari metode
backpropagation dengan data masukan yang direduksi oleh algoritma PCA. Metode ini menggunakan informasi sudut wajah pada citra sebagai parameter masukan selain data citra wajah tersebut. Seiring dengan majunya teknologi pengambilan gambar, metode ini dapat digunakan untuk mengenali wajah secara tiga dimensi.

ABSTRACT
Face recognition is one of most discussed topics in image processing. A method used for face recognition is using artificial neural networks. Artificial neural network recognizes faces by learning the faces given to train. The learning method proposed in this paper is using hemispheric structure hidden layer which is an improvement of backpropagation algorithm with reduced data as input using principal component analysis algorithm. This method needs face’s angle on the image as parameter inputs instead of only face data. As the technology of capturing image growing, this method can be applied as an algorithm for 3D face recognition."
[, Fakultas Teknik Universitas Indonesia], 2015
S59789
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hans
"[Dewasa ini, teknologi berkembang dengan sangat pesat, salah satu contoh teknologi yang sedang marak beberapa tahun belakangan ini adalah 3D face recognition. Teknologi ini menggabungkan data biometrik berupa wajah orang yang diambil dari beberapa sudut (horizontal dan vertikal) dan jaringan saraf tiruan. Untuk memperbaiki tingkat rekognisi yang rendah pada saat menggunakan data crisp, maka digunakanlah metode fuzzy. Percobaan akan dilakukan sebanyak tiga kali karena terdapat tiga cluster yang masing-masing cluster terdiri dari beberapa set orang. Pertama-tama, data akan diolah secara bertahap pada fase fuzzification dimulai dari parameter ekspresi, orang, dan sudut. Tahapan selanjutnya adalah membuat referensi pada fase fuzzy manifold untuk kemudian digunakan pada fase fuzzy nearest distance. Pada fase fuzzy nearest distance akan dicari jarak terpendek dari data testing dengan referensi yang sudah ada. Hasil keluaran dari sistem ini adalah kombinasi sudut horizontal dan vertikal dari tiap-tiap cluster yang nantinya akan dimasukkan kedalam Jaringan Saraf Tiruan (JST) dengan lapis tersembunyi berstruktur hemisfer untuk mendapatkan tingkat rekognisi. Secara keseluruhan rata-rata tingkat rekognisi setiap cluster sudah bisa mencapai 80%. Hal ini menunjukkan sistem sudah cukup optimal dalam mengenali pola wajah yang ada.
;The development of technology is growing rapidly, one of the examples of the technology that is emerging in recent years is 3D face recognition. This technology combines biometric data in form of faces which are taken from several angles (combination of horizontal and vertical angles) and artificial neural network. In order to improve the low recognition rate from crisp data, fuzzy method is used. The experiment will be performed three times because there are three cluster which are consist of several set of person. Firstly, the data will be processed step by step in fuzzification phase starting from the level of expression continued with the level of face and lastly is the level of person. With the use fuzzification, the crisp data can be converted into fuzzy. The next step is to make references in fuzzy manifold phase in order to be used in fuzzy nearest distance phase. In fuzzy nearest distance phase, the shortest distance between the testing data the references will be processed in artificial neural network with hemispheric structured hidden layer. Generally, the average of the all recognition rate can reach up to 80% which means that the system can recognize the face pattern quite good.
;The development of technology is growing rapidly, one of the examples of the technology that is emerging in recent years is 3D face recognition. This technology combines biometric data in form of faces which are taken from several angles (combination of horizontal and vertical angles) and artificial neural network. In order to improve the low recognition rate from crisp data, fuzzy method is used. The experiment will be performed three times because there are three cluster which are consist of several set of person. Firstly, the data will be processed step by step in fuzzification phase starting from the level of expression continued with the level of face and lastly is the level of person. With the use fuzzification, the crisp data can be converted into fuzzy. The next step is to make references in fuzzy manifold phase in order to be used in fuzzy nearest distance phase. In fuzzy nearest distance phase, the shortest distance between the testing data the references will be processed in artificial neural network with hemispheric structured hidden layer. Generally, the average of the all recognition rate can reach up to 80% which means that the system can recognize the face pattern quite good.
, The development of technology is growing rapidly, one of the examples of the technology that is emerging in recent years is 3D face recognition. This technology combines biometric data in form of faces which are taken from several angles (combination of horizontal and vertical angles) and artificial neural network. In order to improve the low recognition rate from crisp data, fuzzy method is used. The experiment will be performed three times because there are three cluster which are consist of several set of person. Firstly, the data will be processed step by step in fuzzification phase starting from the level of expression continued with the level of face and lastly is the level of person. With the use fuzzification, the crisp data can be converted into fuzzy. The next step is to make references in fuzzy manifold phase in order to be used in fuzzy nearest distance phase. In fuzzy nearest distance phase, the shortest distance between the testing data the references will be processed in artificial neural network with hemispheric structured hidden layer. Generally, the average of the all recognition rate can reach up to 80% which means that the system can recognize the face pattern quite good.
]"
Fakultas Teknik Universitas Indonesia, 2015
S62379
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bayu Adianto Prabowo
"Cylindrical Hidden Multi-Layer Perceptron Back Propagation (CHMLP-BP) adalah sistem jaringan syaraf tiruan berdasarkan multy-layer perceptron untuk mengenali objek 3 dimensi secara horizontal. Arsitektur CHMLP-BP dikembangkan lebih lanjut menjadi Hemisphere Structure of Hidden Layer (HSHL) sehingga mampu mengenali objek 3 dimensi secara vertikal dan horizontal dengan lingkup ½ bola. Efektifitas HSHL mendorong disempurnakannya arsitektur HSHL agar dapat mengenali objek 3 dimensi dengan lingkup 1 bola penuh. menjadi Spheric Structure of Hidden Layer. Dalam pengembangan SSHL dilakukan juga penambahan pemrosesan pada citra masukan dengan melakukan inversi dan perentangan nilai piksel citra masukan. Dilakukan juga modifikasi pada metode pengklasifikasian kelas pada neuron keluaran dari penggunaan batas treshold ½ untuk menentukan apakah neuron harus dibaca sebagai 1 atau 0 menjadi menggunakan metode greedy dengan harapan proses pembelajaran menjadi lebih mudah dan pengenalan objek 3 dimensi menjadi lebih baik. Metode eksperimen yang dilakukan pada SSHL menggunakan Percentage of Learning/Testing Paradigm. Kemampuan pengenalan objek 3 dimensi terbaik didapatkan pada jenis jaringan Multiplied untuk arsitektur SSHL Tunggal maupun Jamak dengan prosentase data pelatihan sebesar 47% didapatkan pengenalan sekitar 94% - 95% khususnya menggunakan Multiplied 3 Lapis yang mencapai 95.87%. Pengenalan terburuk pada SSHL didapatkan pada SSHL Tunggal Normal dengan prosentase data pelatihan sebesar 26% diperolah hasil pengenalan mencapai 81.02%."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2004
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hari Prasetyo
"Penelitian ini melanjutkan penelitian sebelumnya tentang pengenalan wajah tiga dimensi dengan HSHL-NN. HSHL-NN adalah struktur neural network dengan hidden layer yang berbentuk hemisfer. Penelitian sebelumnya citra yang digunakan kondisinya ideal atau normal, dalam kenyataannya citra yang didapatkan tidak selalu ideal.
Pada penelitian ini, penulis mencoba untuk melakukan percobaan dengan menggunakan citra yang telah terdegradasi oleh noise untuk menguji kekuatan HSHL-NN. Noise yang dipakai dalam penelitian ini ada empat macam, yaitu Gaussian, poisson, salt & pepper, dan juga speckle. Selain itu, penulis juga menguji hasil estimasi sudut yang telah dihasilkan pada penelitian lain. Citra masukan yang digunakan direduksi menggunakan principal component analysis.
Kesimpulan yang didapatkan dari analisis hasil percobaan yang dilakukan adalah HSHL-NN masih dapat mengenali objek dengan baik walaupun citra yang digunakan sebagai data acuan maupun data uji telah terdegradasi dengan noise, selain itu dapat disimpulkan bahwa hasil estimasi sudut yang dijadikan masukan informasi sudut pada HSHL-NN hasilnya sangat baik.

This research is a continuation to previous researchs about three dimensional face recognition using HSHL-NN. HSHL-NN is a neural network with its hidden layer structured like a hemispher. In previous researchs, images are ideal, meaning that the quality of image is normal and noise-free. In reality, the taken images would not always ideal, which can be noisy.
In this research, writer tried to do experiments using noisy-degraded images to test the strength of the HSHL-NN. There are four kinds of noises used in this research: Gaussian, poisson, salt & pepper, and speckle. Besides doing the experiment with the noise-degraded image, writer also evaluated the result from pose estimation research. Images used in this research are reduced using principal component analysis.
This research concluded that HSHL-NN is strong enough to recognize noise-degraded images. On the other hand, the results from experiments with pose estimation as angle input in HSHL-NN is satisfying."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Danu Widatama
"Biometrik adalah proses identifikasi dan autentikasi berdasarkan atribut unik yang dimiliki oleh manusia. Salah satu atribut manusia yang dapat digunakan untuk biometrik adalah iris. Iris adalah bagian dari mata yang mengatur banyaknya cahaya yang masuk mengenai retina. Iris berbentuk lingkaran dan memiliki karakteristik yang unik pada setiap orang. Penelitian ini adalah tentang pengenalan iris untuk biometrik.
Dalam penelitian ini pembuatan vektor masukan untuk pengenalan dilakukan dengan cara yang berbeda dari biasanya yaitu dengan melingkar, sesuai bentuk iris. Untuk pengenalannya digunakan metode pattern matching dan jaringan syaraf tiruan. Dengan pembuatan vektor masukan secara melingkar, tingkat pengenalan yang dihasilkan cukup tinggi terutama jika metode pengenalan yang digunakan adalah dengan pattern matching.

Biometric is the process of identification and authentication based on many unique attributes of human. One of the usable human attributes for biometric is iris. Iris is a part of the human eye which controls the amount of light going to the retina. Iris is circular and each person has a different iris characteristics. This research is about iris recognition for biometrics.
In this research, the input vector for recognition is created with a different way from the usual. The input vector is created by following iris shape which is circular. The recognition process is done by using pattern matching and artificial neural network. The creation of input vector by circling yields a high recognition rate, especially when pattern matching is used for the recognition process.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>