Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 10234 dokumen yang sesuai dengan query
cover
Craig, John J.
Upper Saddle River, NJ: Pearson/Prentice Hall, 2005
629.892 CRA i
Buku Teks  Universitas Indonesia Library
cover
Craig, John J.
Harlow, Essex: Pearson, 2014
629.892 CRA i
Buku Teks  Universitas Indonesia Library
cover
Coiffet, Philippe
New York: McGraw-Hill, 1982
629.892 COI i
Buku Teks  Universitas Indonesia Library
cover
Fu, K.S.
New York: McGraw-Hill, 1987
629.892 FU r
Buku Teks  Universitas Indonesia Library
cover
Zedric Immanuel Abetto
"Skripsi ini membahas perancangan dan prototipe dari robotic finger dengan dua derajat kebebasan yang dikendalikan secara underactuated dan memiliki link atau ruas-ruas jari yang dapat diatur stiffness nya. Metode underactuated ini menggunakan kabel tendon yang berfungsi untuk menggerakkan joint-joint pada robotic finger sehingga dapat meniru gerakan flexion dan extension jari manusia. Kemudian, link pada robotic finger ini dipadukan dengan variable stiffness link berbasis kontrol struktur untuk mengatur stiffness link-link tersebut. Penelitian ini dilakukan dengan cara melakukan perancangan menggunakan perangkat lunak Autodesk Inventor Professional 2023, perhitungan dengan metode analitik, simulasi metode elemen hingga dengan perangkat lunak Ansys Student 2023, dan eksperimen uji tarik untuk mengevaluasi kinerja prototipe robotic finger. Eksperimen yang dilakukan adalah bending test dengan objek robotic finger untuk mengetahui efek penggunaan variable stiffness link. Nilai Stiffness terendah robotic finger berdasarkan metode analitik, numerik, dan eskperimen berturut-turut adalah 0.0499 N/mm, 0.0573 N/mm, dan 0.0806 N/mm. Nilai Stiffness tertinggi robotic finger berdasarkan metode analitik, numerik, dan eskperimen berturut-turut adalah 5.25 N/mm, 1.89 N/mm, dan 0.400 N/mm.

This thesis discusses the design and prototype of an underactuated robotic finger with two degrees of freedom, controlled by under actuation, and featuring adjustable stiffness in its finger links or segments. The underactuated method employs tendon cables to actuate the joints of the robotic finger, enabling it to mimic the flexion and extension movements of a human finger. Additionally, the links in this robotic finger are combined with variable stiffness links based on structural control to regulate the stiffness of the links. This research is conducted through a design process using Autodesk Inventor Professional 2023 software, analytical calculations, finite element method simulations using Ansys Student 2023 software, and tensile testing experiments to evaluate the performance of the robotic finger prototype. The performed experiment involves a bending test on the robotic finger to assess the effects of using variable stiffness links. The lowest stiffness values for the robotic finger, as determined by analytical, numerical, and experimental methods, are 0.0499 N/mm, 0.0573 N/mm, and 0.0806 N/mm, respectively. The highest stiffness values for the robotic finger, based on the analytical, numerical, and experimental methods, are 5.25 N/mm, 1.89 N/mm, and 0.400 N/mm, respectively."
Depok: 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
King, Sun Fu
New York: McGraw-Hill, 1987
629.892 KIN r
Buku Teks  Universitas Indonesia Library
cover
Dasdianto
"Teknologi, khususnya di bidang konstruksi, akhir-akhir ini berkembang dengan cukup pesat, diantaranya adalah Teknologi Advanced Material, Modularization, Automation, serta Smart Equipment. Penerapan teknologi di dunia industri konstruksi juga bermacam-macam, contohnya adalah 3D Printing, AI&ML, Big Data, Drones, Digital Twin, VR&AR, Modular Construction, dan Robotics. Adaptasi terhadap teknologi baru pada era digital sangat dibutuhkan untuk mampu berkompetisi di tengah perkembangan industri, khususnya pada produksi precast di Indonesia. Tujuan penelitian adalah mengintervensi proses produksi precast 3D printing dengan bantuan sistem robotik, khususnya dalam pengendalian kualitas. Hal ini sangat esensial dikarenakan penggunaan 3D printing akan sangat bergantung dengan material yang digunakan. Material yang digunakan pada 3D printing harus dijaga kualitasnya agar peralatan yang digunakan tidak mudah rusak dan hasil precast yang dihasilkan juga berkualitas baik. Produksi precast dengan 3D printing lebih baik dari sistem konvensional, baik dari segi kualitas, produktivitas, dan schedule. Namun, bukan berarti sistem pengendalian mutu tidak diperlukan pada proses produksi precast menggunakan 3D printing. Simulasi dilakukan terhadap model yang mengombinasikan teknologi 3D printing dari COBOD Company dan observasi yang dilakukan pada produksi precast concrete Proyek X oleh PT. Y, serta benchmark penggunaan sistem robotik. Diskusi dengan beberapa pakar pun dilakukan untuk memvalidasi hasil simulasi.

Technology, especially in the field of construction, has recently developed quite rapidly, including Advanced Material Technology, Modularization, Automation, and Smart Equipment. The application of technology in the world of construction industry also varies, including 3D printing, AI & ML, Big Data, Drones, Digital twin, VR&AR, modular construction and robotics. Adaptation to new technologies in the digital era is urgently needed to be able to compete amid industrial developments, especially in precast production in Indonesia. The aim of the research is to intervene in the precast 3D printing production process with the help of a robotic system, especially in quality control. This is necessary because the use of 3D printing will very much depend on the material used. The quality of the material used in 3D printing must be maintained so that the 3D printing equipment is not easily damaged, and the resulting precast results also have a fairly good. We know that precast production with 3D printing is better than conventional systems in terms of both quality and productivity and schedule. But that doesn't mean there isn't a need for a quality control system in the precast production process using 3D printing. The simulation was carried out on a model that combines 3D printing technology from COBOD Company and observations made on Project X precast concrete production by PT. Y, as well as benchmarks for the use of robotic systems. Discussions with several experts were carried out to validate the simulation results.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Nakamura, Yoshihiko
Massachusetts: Addison-Wesley , 1991
629.892 NAK a
Buku Teks  Universitas Indonesia Library
cover
Selig, J.M.
New York: Prentice-Hall, 1992
629.892 SEL i
Buku Teks  Universitas Indonesia Library
cover
Gandjar Kiswanto
"ABSTRAK
Penelitian ini berisi mengenai desain prototipe robot jenis artikulasi dengan enam derajat kebebasan. Kegiatan desain diawali dengan menentukan spesifikasi awal robot. Berdasarkan spesifikasi awal dilakukan perhitungan untuk menentukan percepatan, gaya, dan torsi. Percepatan dihitung dengan menggunakan metode grafis dengan maksud untuk mempermudah perhitungan. Berdasarkan percepatan tersebut, berdasarkan Hukum II Newton didapat gaya-gaya yang bekerja di titik berat lengan. Dari gaya dan jarak antara titik berat lengan dengan sendi akan didapatkan torsi untuk menyeimbangkan lengan. Daya motor untuk menggerakkan sendi didapat dengan mengalikan torsi dengan kecepatan sudut sendi. Perhitungan dilakukan pada kondisi kerja maksimum yaitu saat bekerja dengan kecepatan maksimum dan lengan momen terpanjang.
Hasil perhitungan digunakan untuk menentukan dimensi struktur. komponen -komponen struktur yang diperhitungkan adalah yang dianggap kritis, yaitu apabila ia gagal, maka dapat mengakibatkan kegagalan bagi keseluruhan struktur. Kriteria yang digunakan dalam perhitungan adalah kriteria kuat dan kaku.
Lintasan pergerakan (trajectory planning) lengan robot direncanakan merupakan lintasan pergerakan point to point sehingga dalam perhitungan lintasan digunakan cara perhitungan lintasan sudut untuk setiap sendi. Perhitungan aspek inverse kinematics menggunakan metode analitis dengan melakukan empatkonfgurasi yang dianggap cocok untuk struktur manipulator, diantaranya left & above arm, left & below arm, right & above arm serta right & below arm.
Tinjauan dinamika pergerakan lengan robot dilakukan pada struktur manipulator dengan menggunakan substitusi variabel bebas berupa polinom berderajat tiga. Substitusi ini kemudian diterapkan dalam perhitungan trajectory planning menggunakan rumus-rumus rekursif persamaan Newton-Euler. Hasil perhitungan diperoleh besarnya gaya dan momen torsi yang dibutuhkan dalam pergerakan.
Uji verifikasi terhadap desain struktur manipulator robot dilakukan berdasarkan aspek kinematika serta dinamik dimana menilai workspace yang dihasilkan, kondisi kerja manipulator robot serta tingkat kestabilan struktur.
Selain aspek struktur, kinematik serta dinamika pergerakan, dilakukan proses desain pengendalian pergerakan lengan robot baik perangkat lunak maupun perangkat keras. Desain perangkat lunak mengacu hasil dari nilai sudut-sendiri pergerakan keluaran perhitungan trajectory planning, kemudian dapat dihitung jumlah step yang diperlukan untuk menggerakan motor stepper, dan selanjutnya dihitung jumlah pulsa yang harus dikirimkan ke masing-masing motor. Desain perangkat keras meliputi desain yang berfungsi sebagai interface antara komputer sebagai pengendali motor stepper (berfungsi sebagai sistem penggerak robot dengan lengan robot). Dan desain pengendali pergerakan motor stepper yang berfungsi sebagai penggerak logika (berfungsi untuk melakukan proses switching pada motor stepper).
Uji validasi desain dilakukan dengan mengintegrasikan aspek struktur, kinematika, dinamika serta kontrol dimana menguji tingkat akurasi posisi, akurasi lintasan, overshoot serta resolusi."
Depok: Fakultas Teknik Universitas Indonesia, 1998
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>