UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Perbandingan generator dan discriminator pada Conditional Generative Adversarial Network (cGAN) untuk estimasi kedalaman relatif dari citra bawah air = Comparison of generator and discriminator on Conditional Generative Adversarial Network (cGAN) for estimating the relative depth of underwater image

Reynaldo Wijaya Hendry; Laksmita Rahadianti, supervisor; Aruni Yasmin Azizah, supervisor; Dadan Hardianto, examiner; Suryana Setiawan, examiner (Fakultas Ilmu Komputer Universitas Indonesia, 2021)

 Abstrak

Citra bawah air tergolong ke dalam citra yang sulit diproses secara digital. Hal ini dise- babkan citra bawah air mengalami degradasi gabungan berupa scattering dan absorption. Sedangkan permasalahan estimasi kedalaman relatif adalah salah satu permasalahan yang masih menjadi riset dalam bidang computer vision saat ini. Permasalahan ini digolongkan sebagai permasalahan image-to-image translation. Salah satu model yang sering digunakan untuk menyelesaikan permasalahan image-to-image translation adalah dengan menggunakan conditional generative adversarial network (cGAN) yang merupakan salah satu varian dari generative adversarial network (GAN). Komponen penting dari cGAN terdiri dari generator dan discriminator yang berpengaruh terhadap keefektifan model. Pada penelitian ini akan diuji kombinasi generator yang terdiri dari U-net, Resnet-6, dan Resnet-9 dan discriminator yang terdiri dari PatchGAN serta ImageGAN dalam menyelesaikan permasalahan estimasi kedalaman relatif dari citra bawah air. Keoptimalan model diuji dengan menggunakan metrik structural index similarity (SSIM) dan root mean square error (RMSE). Didapatkan hasil bahwa model dengan generator U-net dan discriminator PatchGAN memberikan hasil terbaik pada metrik SSIM dan RMSE.

Underwater images are classified as images that are difficult to be processed digitally. This happens due to the combined degradation of the underwater image in the form of scattering and absorption. Meanwhile, relative depth estimation is one of the problems that is still being actively researched in computer vision. This problem is classified as image-to-image translation problem. One of the model that is often used to solve image-to-image translation is the conditional generative adversarial network (cGAN) which is a variant of generative adversarial network (GAN). The important component of cGAN consists of generator and discriminator which affects the model’s effectiveness. In this research, a combination of generator consisting of U-net, Resnet-6, and Resnet-9 and discriminator consisting of PatchGAN and ImageGAN will be tested in solving relative depth estimation problem for underwater image. Optimization of the model is tested using the metrics structural similarity index (SSIM) and root mean square error (RMSE). The results show that models with generator U-net and discriminator PatchGAN give the best result on SSIM and RMSE metrics.

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-Pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Deskripsi Fisik : xiv, 39 pages : illustrations + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-Pdf 14-25-11380595 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920554876
Cover