UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Model Tanya Jawab bidang Hukum Menggunakan Large Language Model Generatif dengan Few-shot Prompting pada Knowledge Graph LexID = Legal Question Answering Model Using Generative Large Language Model with Few-shot Prompting on LexID Knowledge Graph

Keyza Asyadda Ramadhan Mufron; Adila Alfa Krisnadhi, supervisor; Panca Oktavia Hadi Putra, examiner; Arlisa Yuliawati, examiner (Fakultas Ilmu Komputer Universitas Indonesia, 2024)

 Abstrak

Berdasarkan UU Nomor 12 Tahun 2011, peraturan perundang-undangan harus ditempatkan dalam beberapa media agar dapat diakses seluruh warga. Akan tetapi, beberapa layanan resmi memiliki isu efisiensi bagi pengguna untuk mencari informasi antar peraturan hukum. Solusi alternatif sistem tanya jawab hukum berbasis knowledge graph, yaitu LexID QA memiliki keterbatasan pada pertanyaan yang lebih ekspresif. Penelitian ini mengusulkan sistem tanya jawab hukum berbasis LLM dengan knowledge graph LexID melalui few-shot prompting. Sistem yang dibangun menerjemahkan pertanyaan menjadi kueri SPARQL. Sistem terdiri dari dua komponen, yaitu tanya jawab dan entity linking. Entity linking dilakukan dengan model berbahasa Indonesia untuk memetakan pertanyaan yang diberikan pengguna menjadi pemetaan entitas dan IRI. Kemudian, tanya jawab dilakukan dengan model code generation untuk menerjemahkan pertanyaan beserta informasi entity linking menjadi kueri SPARQL, bahasa kueri knowledge graph.

Based on Act 12/2011, legal document must be placed in several medias for citizen to access it. However, government services have shortcoming in efficiently retrieving information involving two or more legal documents. Existing solution to this issue is LexID QA yet unable to process more expressive question. This research proposes knowledge graph legal question answering based on LLM utilizing few-shot prompting. Proposed system is expected to transform question into SPARQL query. Proposed system is composed of two components, that is question answering and entity linking. Entity linking utilize Indonesian LLM to map user's question into entity-IRI mapping. Question answering model then translate question to SPARQL query with entity linking as an additional context.

 File Digital: 1

Shelf
 S-Keyza Asyadda Ramadhan Mufron.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiv, 36 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-25-65523537 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920554403
Cover