UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Pemodelan Dependensi Frekuensi dan Rata-Rata Severitas Klaim Asuransi Kendaraan Berdasarkan Waktu Tunggu Antar Klaim = Modelling Dependence of Claim Frequency and Average Claim Severity of Non-Life Insurance Using Inter Claim Waiting Time

Nurul Haliza Amalia Putri; Fevi Novkaniza, supervisor; Sindy Devila, supervisor; Dian Lestari, examiner; Rahmat Al Kafi, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023)

 Abstrak

Penentuan premi secara tepat merupakan tugas penting bagi perusahaan asuransi. Penentuan premi pada asuransi non-jiwa dihitung dari estimasi kerugian agregat yang didasari pada frekuensi (banyaknya) klaim dan severitas (besarnya) klaim. Kerugian agregat dapat diestimasi dengan model risiko kolektif yang mengasumsikan bahwa frekuensi klaim dan severitas klaim saling bebas. Pada praktiknya, ditemukan kondisi di mana frekuensi klaim dan severitas klaim saling bergantung (dependen). Untuk menghasilkan penentuan premi yang akurat, ketergantungan antara frekuensi klaim dan severitas klaim perlu diperhatikan. Dalam penelitian ini dilakukan pemodelan dependensi frekuensi klaim dan rata-rata severitas klaim menggunakan copula karena fleksibilitasnya dalam membangun distribusi bersama dari dua variabel acak yang dapat berasal dari distribusi berbeda. Pada beberapa kasus ditemukan bahwa besar kerugian juga dipengaruhi oleh beberapa faktor risiko (kovariat). Salah satu metode dalam membangun distribusi bersama dari dua variabel acak yang berasal dari distribusi berbeda dengan memerhatikan kovariat adalah dengan menggunakan model copula berbasis regresi. Hal tersebut dilakukan dengan mengkonstruksi dua Generalized Linear Model (GLM) terlebih dahulu, yaitu dengan variabel respons frekuensi klaim dan rata-rata severitas klaim. Kemudian model copula berbasis regresi berperan dalam menghubungkan kedua GLM dari frekuensi klaim dan rata-rata severitas klaim. Penelitian ini menggunakan pendekatan lain yaitu dengan menggunakan variabel acak kontinu waktu tunggu antar klaim sebagai representasi dari frekuensi klaim, sehingga aspek yang diperhatikan bukan hanya banyaknya klaim yang terjadi namun juga kapan klaim tersebut terjadi. Copula yang digunakan ialah copula Gaussian dan parameter dependensi diestimasi menggunakan metode Inference Function for Margin (IFM). Berdasarkan implementasi pemodelan dependensi antara frekuensi klaim dan rata-rata severitas klaim berdasarkan waktu tunggu antar klaim pada data ausprivauto0405, diperoleh informasi bahwa terdapat ketergantungan positif antara frekuensi klaim dengan rata-rata severitas klaim. Dari implementasi model yang sudah dibentuk pun diperoleh bahwa nilai ekspektasi total kerugian yang dihitung berdasarkan asumsi dependensi antara frekuensi klaim dan rata-rata severitas klaim lebih besar dibandingkan dengan nilai ekspektasi total kerugian berdasarkan asumsi independensi.

Determining the accurate premium is a crucial task for insurance companies. The determination of non-life insurance premium is calculated from the aggregate loss estimation based on claim frequency and claim severity. Aggregate losses can be estimated with a collective risk model that assumes independence between claim frequency and claim severity. In practice, there are found conditions where claim frequency and claim severity are dependent. To achieve an accurate premium determination, the dependence between claim frequency and claim severity needs to be considered. This research applies dependence modelling using copula due to its flexibility in costructiong a joint distribution of two random variables that may originate from different distributions. In some cases, the amount of losses is also influenced by several risk factors (covariates). One method for constructing a joint distribution of two random variables from different distributions while considering covariates is to use a copula-based regression model. This is done by constructing two Generalized Linear Models (GLM), one for claim frequency and another one for average claim severity. Then the copula-based regression model plays a role in connecting the two GLMs of claim frequency and average claim severity. This research introduces an alternative approach by using a continuous random variable, waiting time between claims, as a representation of claim frequency. This approach considers not only the number of claims but also the time when these claims occur. The copula used is a Gaussian copula and the dependen parameter is estimated using the Inference Functions for Margin (IFM) method. Based on the implementation of dependency modeling between claim frequency and average claim severity based on waiting time between claims on ausprivauto0405 data, it is obtained that there is a positive dependency between claim frequency and average claim severity. The implemented model also reveals that the total expected loss calculated based on the assumption of dependence between claim frequency and average claim severity is higher than the total expected loss under the independence assumption.

 File Digital: 1

Shelf
 S-Nurul Haliza Amalia Putri.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiv, 83 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-25-53115926 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920552823
Cover