UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Streaming Data Multi UAV untuk Pemantauan Area Bencana Menggunakan FogVerse = Multi UAV Data Streaming for Disaster Area Monitoring Using FogVerse

Akbar Maliki Haqoni Jati; Haikal Rahman; Muhammad Hafizhuddin Hilman, supervisor; Amril Syalim, examiner; Dinial Utami Nurul Qomariah, examiner (Fakultas Ilmu Komputer Universitas Indonesia, 2024)

 Abstrak

Pencarian korban pada daerah bencana biasanya memiliki kondisi medan yang tidak menguntungkan bagi penyelamat sehingga bisa menyebabkan korban yang ingin diselamatkan tidak mendapatkan penanganan dalam tepat waktu. Sistem pencarian korban berbasis Multi-UAV (Unmanned Aerial Vehicles) muncul sebagai solusi untuk memfasilitasi operasi pencarian yang lebih mudah. Penggunaan perangkat Multi-UAV dalam pencarian korban memerlukan aliran data yang besar, sering kali membebani jaringan dan protokol yang ada, mengakibatkan ketidakstabilan dalam latensi dan penurunan FPS (Frame Per Second). FogVerse, framework dengan model komunikasi Publish-Subscribe, menawarkan solusi dengan sistem yang peka terhadap throughput, sehingga menstabilkan latensi dan meningkatkan FPS, terutama di daerah bencana dengan keterbatasan konektivitas internet. Sistem pencarian korban berbasis Multi-UAV beroperasi dengan mendeteksi manusia di daerah bencana dengan model deep learning. Penelitian ini mengatasi tantangan dalam pencarian korban dengan Multi-UAV dan juga menunjukkan faktor-faktor yang dapat memengaruhi latensi, seperti penggunaan CPU (Central Processing Unit), Memori, dan GPU (Graphics Processing Unit) dari komponen yang terlibat dalam sistem. Di antara berbagai model, model YOLOv8n yang telah dilakukan transfer learning dipilih dan dibandingkan dengan model awal sebelum transfer learning. Model tersebut menunjukkan peningkatan dibanding model aslinya, termasuk peningkatan precision/recall sebesar 0.384/0.562, peningkatan mAP sebesar 0.555, dan pengurangan waktu inferensi sebesar 2.2 ms. Model itu sendiri menunjukkan peningkatan latensi rata-rata sekitar 9.775 milidetik di semua skenario. Meskipun berkinerja sedikit lebih baik dalam hal FPS dengan 1 atau 2 UAV, model awal YOLOv8n umumnya mencapai FPS yang lebih tinggi ketika digunakan 3 atau 4 UAV. Arsitektur Multi UAV FogVerse memberikan FPS yang lebih unggul dan latensi yang lebih stabil dibandingkan dengan arsitektur Centralized, meskipun memiliki memori dan GPU usage yang lebih tinggi. Namun, keunggulan FPS-nya menurun dengan penggunaan UAV yang lebih banyak, menunjukkan tantangan alokasi sumber daya, sementara arsitektur Centralized mempertahankan penggunaan sumber daya yang konsisten tetapi mengalami lonjakan latensi dan frame loss yang lebih tinggi.

The search for victims in disaster-stricken areas typically involves challenging terrain conditions for rescuers, potentially resulting in delayed assistance for those in need. A Multi-UAV (Unmanned Aerial Vehicles) based victim search system emerges as a solution to facilitate more efficient search operations. The use of Multi-UAV devices in victim searches generates substantial data streams, often overwhelming existing networks and protocols, leading to instability in latency and decreased FPS (Frame Per Second). FogVerse, a framework with a Publish-Subscribe communication model, offers a solution with a system that is sensitive to throughput, thereby stabilizing latency and improving FPS, especially in disaster-stricken areas with limited internet connectivity. The Multi-UAV based victim search system operates by detecting humans in disaster areas with a deep learning model. This research addresses challenges in victim searches with Multi-UAV, while also shows factors that can influence latency, such as CPU (Central Processing Unit), Memory, and GPU (Graphics Processing Unit) usage of the components involved in the system. Across different models, the transfer-learned YOLOv8n model is chosen and compared to its original model. The transfer-learned model shows enhancements over the original model, including an increase in precision/recall by 0.384/0.562, an mAP improvement of 0.555, and a reduction in inference time by 2.2 ms. The model itself shows an average latency improvement of approximately 9.775 milliseconds across all scenarios. Although it performs slightly better in terms of FPS with 1 or 2 UAVs, the standard YOLOv8n model generally achieves higher FPS when 3 or 4 UAVs are used. The Multi UAV FogVerse Architecture provides superior FPS and more stable latency compared to the Centralized architecture, despite higher memory and GPU usage. However, its FPS advantage decreases with more UAVs, suggesting resource allocation challenges, while the Centralized architecture maintains consistent resource usage but suffers from higher latency and frame loss.

 File Digital: 1

Shelf
 S-Akbar Maliki Haqoni Jati.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
Bahasa : ind
Sumber Pengatalogan : LIbUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xv, 80 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-25-17678435 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920551966
Cover