UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Estimasi Usia Pada Populasi Pediatrik Menggunakan Convolutional Neural Network (CNN) dari Radiografi Panoramik = Age Estimation Using Convolutional Neural Network (CNN) from Panoramic Radiographs in a Pediatric Population

Emmanuel Rieno Bobba Pratama; Siregar, Syahril, supervisor; Deni Hardiansyah, examiner; Akbar Azzi, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024)

 Abstrak

Estimasi usia memainkan peran penting dalam analisis forensik, diagnosis klinis, dan investigasi kriminal. Metode tradisional untuk memperkirakan usia pada anak-anak dan remaja sering melibatkan pengamatan perkembangan gigi. Penelitian ini mengeksplorasi penggunaan deep learning untuk estimasi usia kronologis menggunakan 668 citra panorama gigi (OPG) dari usia 5 hingga 15 tahun dengan metode Convolutional Neural Networks (CNN). Penelitian ini menentukan model CNN terbaik dengan menggunakan augmentasi dan penyempurnaan parameter model VGGNet dan DenseNet. Teknik validasi silang k-fold, oversampling SMOTE, dan augmentasi gambar dengan ImageDataGenerator digunakan untuk mengatasi ketidakseimbangan kelas dan ukuran data sampel yang kecil. Tiga model berbeda dibandingkan (VGG16, VGG19, dan DenseNet-201), masing-masing menggunakan dua jenis augmentasi yang berbeda. Model terbaik, VGG16 dengan ImageDataGenerator, mencapai RMSE sebesar 0,98 tahun (10,85%), MAE sebesar 0,67 tahun, dan nilai R 2 sebesar 0,88 pada set pengujian, menunjukkan error yang rendah.

Age estimation plays a crucial role in forensic analysis, clinical diagnosis, and criminal investigation. Traditional methods for estimating age in children and adolescents often involve observing dental development. This study explores the use of deep learning for chronological age estimation using 668 panoramic dental images (OPG) from ages 5 to 15 years with Convolutional Neural Networks (CNN). The study determines the best CNN model by using augmentation and fine-tuning parameters of VGGNet and DenseNet models. Cross-validation technique k-fold, SMOTE oversampling, and image augmentation with ImageDataGenerator are used to address class imbalance and small sample sizes. Three different models (VGG16, VGG19, and DenseNet-201) are compared, each using two different types of augmentation. The best model, VGG16 with ImageDataGenerator, achieved an RMSE of 0.98 years (10.85%), an MAE of 0.67 years, and an R 2 value of 0.88 on the test set, indicating relatively low error.

 File Digital: 1

Shelf
 S-Emmanuel Rieno Bobba Pratama.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xvii, 68 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-24-43430317 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920550136
Cover