https://access.unram.ac.id/wp-content/

UI - Disertasi Membership :: Kembali

UI - Disertasi Membership :: Kembali

Pemodelan Filtering dan Clustering Data Satelit Penginderaan Jauh untuk Deteksi Dini Kebakaran Hutan dan Lahan di Indonesia. = Filtering and Clustering Modeling using Remote Sensing Satellite Data for Early Detection of Forest and Land Fires in Indonesia.

Andy Indradjad; Rokhmatuloh, promotor; Muhammad Dimyati, co-promotor; Erna Sri Adiningsih, co-promotor; Prawito Prajitno, examiner; Santoso Soekirno, examiner; Supriatna, examiner; M. Rokhis Khomarudin, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024)

 Abstrak

Kebakaran hutan dan lahan merupakan bencana alam yang terjadi berulang hampir setiap tahun di Indonesia, dan mengakibatkan kerugian ekonomi yang besar maupun bagi lingkungan. Penggunaan data satelit penginderaan jauh dalam menurunkan informasi fire hotspot dapat digunakan untuk melakukan pemantauan kebakaran lahan gambut (peat) dan tanah mineral (non-peat) di Indonesia. Sistem pemantauan harian sangat diperlukan untuk membantu pemangku kepentingan di lapangan dalam mengambil tindakan mitigasi bencana. Tujuan penelitian ini adalah membangun sebuah model filtering dan clustering untuk deteksi dini kebakaran hutan dan lahan di Indonesia dengan data sensor Visible Infrared Imaging Radiometer Suite (VIIRS) dari satelit Suomi NPP dan NOAA-20 menggunakan metode Euclidean distance. Model filtering dan clustering digunakan untuk menyederhanakan jumlah fire hotspot yang sangat bermanfaat bagi kepentingan di lapangan ketika terjadi kebakaran hutan dan lahan. Model filtering dilakukan dengan cara membangun peta hotspot per tahun dengan kejadian pengulangan melebihi suatu ambang batas, dan peta tersebut akan digunakan sebagai filter dari data fire hotspot yang dihasilkan. Model clustering dilakukan dengan menggunakan menghitung jarak Euclidean antar titik fire hotspot yang dihasilkan, jika jaraknya memenuhi 1,5 kali ukuran piksel maka titik fire hotspot tersebut akan dikelompokkan menjadi satu cluster. Nilai akurasi dievaluasi berdasarkan estimasi luas kebakaran, peta burned area, dan peta lahan gambut dari setiap kejadian kebakaran yang dilaporkan petugas lapangan. Hasil pengolahan dan analisis menunjukkan bahwa akurasi efektif pada data VIIRS yaitu pada jarak 1,5 km atau empat kali ukuran pikselnya dari pusat kebakaran. Akurasi deteksi secara umum untuk cluster hotspot (cluster-HS) dan titik hotspot (titik-HS) masing-masing sebesar 52% dan 53%. Untuk wilayah yang luasnya lebih dari 14 ha, akurasinya menjadi sangat baik yaitu sampai dengan sebesar 83%. Analisis dengan pemilahan lahan gambut dan tanah mineral menunjukkan cluster-HS berkinerja lebih baik di lahan gambut dengan akurasi sebesar 62% dibandingkan di lahan tanah mineral sebesar 57%. Tanpa mengurangi ketepatan pengamatan titik api, penelitian ini menunjukkan bahwa model dapat diandalkan untuk membantu pemangku kepentingan di lapangan dalam mengambil tindakan. Oleh karena itu, model ini dapat diimplementasikan ke dalam pemantauan hotspot harian di Indonesia.

In Indonesia, forest and land fires are frequent natural catastrophes that do significant damage to the environment and economy. The use of remote sensing satellite data to derive fire hotspot information can be used to monitor peat and non-peat land fires in Indonesia. A daily monitoring system is very necessary to assist stakeholders in the field in taking disaster mitigation actions. The aim of this research is to build a filtering and clustering model for early detection of forest and land fires in Indonesia using Visible Infrared Imaging Radiometer Suite (VIIRS) sensor data from the Suomi NPP and NOAA-20 satellites using the Euclidean distance method. The filtering and clustering model is used to simplify the number of fire hotspots which is very useful for interests in the field when forest and land fires occur. The filtering model is carried out by building a persistent hotspot map per year with repeated events exceeding a threshold, and this map will be used as a filter for the resulting fire hotspot data. The clustering model is carried out by calculating the Euclidean distance between the resulting fire hotspot points. If the distance is 1.5 times the pixel size, the fire hotspot points will be grouped into one cluster. Accuracy values ​​are evaluated based on estimates of fire area, burned area maps, and peatland maps for each fire incident reported by field officers. The results of processing and analysis show that the effective accuracy of VIIRS data is at a distance of 1.5 km or four times the pixel size from the center of the fire. The general detection accuracy for hotspot clusters (cluster-HS) and hotspot points (point-HS) is 52% and 53%, respectively. For areas larger than 14 ha, the accuracy is very good, namely up to 83%. Analysis by separating peat and non-peat land shows that the HS-cluster performs better on peat land with an accuracy of 62% compared to 57% on non-peat land. Without reducing the accuracy of hotspot observations, this research shows that the model can be relied on to assist stakeholders in the field in taking action. Therefore, this model can be implemented into daily hotspot monitoring in Indonesia.

 File Digital: 1

Shelf
 D-Andy Indradjad.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Disertasi Membership
No. Panggil : D-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xvi, 88 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
D-pdf 07-24-97720723 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920549596
Cover