Performa aerodinamis mobil balap sangat penting dalam kompetisi Formula Student, dimana optimalisasi setiap komponen sangatlah penting. Elemen kuncinya adalah rear wing, yang secara signifikan berdampak pada downforce dan drag. Studi ini menyelidiki dampak wingtip vortex pada berbagai desain endplate untuk meningkatkan performa aerodinamis rear wing mobil balap Formula Student. Dengan menggunakan simulasi Computational Fluid Dynamics (CFD) dan pengujian wind tunnel, penelitian ini mengidentifikasi profil endplate yang paling efektif untuk meningkatkan efisiensi aerodinamis. Metodologinya mencakup simulasi CFD dan validasi melalui uji wind tunnel pada model berskala pada kecepatan 20 km/jam. Hasilnya menunjukkan bahwa desain rear cut-out menghasilkan downforce tertinggi, meskipun konsekuensinya lebih banyak drag, dan CL/CD tertinggi. Dalam CFD, desain tersebut memiliki downforce 3,34% lebih banyak, drag 0,9% lebih banyak, dan CL/CD 2,44% lebih banyak. Pengujian wind tunnel menunjukkan tren serupa, meskipun hasilnya memiliki beberapa penyimpangan, dengan downforce lebih besar 13,3% dan drag lebih besar 18,69%, karena beberapa faktor yang menyebabkan penyimpangan tersebut, CL/CD cut-out belakang pada pengujian wind tunnel adalah 6,61% lebih kecil dari baseline design.
The aerodynamic performance of race cars is crucial in Formula Student competitions, where optimizing each component is essential. A key element is the rear wing, which significantly impacts downforce and drag. This study investigates the impact of wingtip vortices on various endplate designs to enhance the aerodynamic performance of a Formula Student race car's rear wing. Using Computational Fluid Dynamics (CFD) simulations and wind tunnel testing, the research identifies the most effective endplate profile for improving aerodynamic efficiency. The methodology includes CFD simulations and validation through wind tunnel tests on a 1:5 scaled model at 30 m/s. Results reveal that the rear cut-out design achieves the highest downforce, though more drag as a consequence, and highest CL/CD. In CFD, it has 3.34% more downforce, 0.9% more drag, and 2.44% more CL/CD. The wind tunnel test shows similar trend, although the result has some deviations, with 13.3% more downforce and 18.69% more drag, due to some factors that causes the deviations, the CL/CD of the rear cut-out on the wind tunnel test is 6.61% less than the baseline design.