https://access.unram.ac.id/wp-content/

UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Strategi Manajemen Energi Kereta Hibrida berbasis Rule Based Pontryagin's Minimum Principle Model Predictive Control = Energy Management Strategy using Rule Based Pontryagin's Minimum Principle Model Predictive Control for Hybrid Trains

Zaidan Aris Athaillah; Aries Subiantoro, supervisor; Abdul Halim, examiner; Naufan Raharya, examiner (Fakultas Teknik Universitas Indonesia, 2024)

 Abstrak

Kereta hibrida merupakan kereta yang menggabungkan beberapa sumber energi dengan tujuan untuk meningkatkan efisiensi bahan bakar dan mengurangi emisi gas rumah kaca di kawasan minim infrastruktur jaringan distribusi listrik. Namun, jenis kereta ini memiliki tantangan dalam manajemen sumber energi agar biaya penggunaannya dapat diminimalkan. Maka dari itu, penelitian dilakukan untuk mengoptimalkan strategi manajemen energi atau yang biasa disebut dengan Energy Management System (EMS). Strategi manajemen energi pertama yang dikenalkan adalah Rule-Based dengan biaya komputasi yang kecil, namun belum optimal. Untuk mendapatkan hasil yang lebih optimal digunakan Model Predictive Control (MPC) yang terkenal sangat andal karena kemampuan prediksi, mampu menangani masalah yang kompleks, dan dapat disesuaikan secara real-time. Optimasi real-time dibatasi oleh waktu cuplik, sehingga optimasinya belum tentu sempurna. Maka, optimasi real-time dapat dikombinasikan dengan optimasi global yang dijalankan secara offline, salah satunya menggunakan strategi Pontryagin’s Minimum Principle (PMP) yang telah banyak digunakan oleh para peneliti karena waktu komputasinya yang cepat dan secara akurat dapat mempertimbangkan State of Charge (SOC) baterai agar tetap dalam range nominal. Penelitian ini bertujuan untuk mengembangkan strategi manajemen energi yang efisien untuk kereta hibrida, menggunakan Rule-Based Pontryagin’s Minimum Principle Model Predictive Control (RB-PMP-MPC). Pengujian dan evaluasi dilakukan dengan melakukan simulasi pada Matlab dan Simulink.

Hybrid trains combine multiple energy sources to improve fuel efficiency and reduce greenhouse gas emissions in areas with limited electrical distribution infrastructure. However, these trains face challenges in energy source management to minimize operational costs. Therefore, research is conducted to optimize energy management strategies, commonly known as the Energy Management System (EMS). The first introduced energy management strategy is Rule-Based, which has low computational costs but is not yet optimal. To achieve more optimal results, Model Predictive Control (MPC) is used, known for its high reliability due to its predictive capabilities, ability to handle complex problems, and real-time adaptability. Real-time optimization is limited by sampling time, so it may not be perfect. Therefore, real-time optimization can be combined with global optimization performed offline, one of which uses Pontryagin's Minimum Principle (PMP) strategy, widely used by researchers for its fast computation time and accurate consideration of the battery's State of Charge (SOC) to remain within the nominal range. This research aims to develop an efficient energy management strategy for hybrid trains using Rule-Based Pontryagin's Minimum Principle Model Predictive Control (RB-PMP-MPC). Testing and evaluation are conducted through simulations in Matlab and Simulink.

 File Digital: 1

Shelf
 S-Zaidan Aris Athaillah.pdf :: Unduh

LOGIN required

 Kata Kunci

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2024
Bahasa : ind
Sumber Pengatalogan : LIbUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : 75 pages : illustration
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-24-80836413 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920544981
Cover