https://access.unram.ac.id/wp-content/

UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Perancangan Model Pengenalan Emosi Dalam Percakapan Bahasa Indonesia Menggunakan Word Embedding Dan Spektrum Suara Pada Metode Machine Learning = Design Of Speech Emotion Recognition Model In Indonesian Conservations Using Word Emebedding And Sound Spectrum Within Machine Learning Methods

Mohammad Darrel Tristan Budiroso; Prima Dewi Purnamasari, supervisor; Anak Agung Putri Ratna, examiner; Lubis, Muhammad Firdaus Syawaludin, examiner (Fakultas Teknik Universitas Indonesia, 2024)

 Abstrak

Penelitian ini menangani masalah pengenalan emosi dalam percakapan berbahasa Indonesia, yang penting untuk aplikasi seperti pengenalan ucapan, interaksi manusiamesin, dan analisis sentimen. Untuk mengatasi kompleksitas data suara dan teks, penelitian ini menggabungkan Word Embedding (Word2Vec) dan spektrum suara (MFCC) menggunakan Convolutional Neural Network (CNN). Word2Vec mengubah dataset suara menjadi representasi teks vektor, sementara MFCC digunakan untuk ekstraksi fitur dari spektrum suara. Model yang dikembangkan dievaluasi dengan dataset percobaan berbahasa Indonesia, dan pendekatan Weighted Average Ensemble yang mengintegrasikan kedua metode ini mencapai akurasi 70%. Hasil ini menunjukkan bahwa integrasi teknologi Word Embedding dan analisis spektrum suara dapat meningkatkan akurasi pengenalan emosi dalam bahasa Indonesia. Penelitian ini berkontribusi signifikan terhadap teknologi pengenalan emosi dan berpotensi meningkatkan interaksi manusia dengan teknologi serta aplikasi dalam analisis sentimen dan pengolahan bahasa alami.

This research addresses the issue of emotion recognition in Indonesian language conversations, which is crucial for applications such as speech recognition, humanmachine interaction, and sentiment analysis. To tackle the complexity of voice and text data, this study combines Word Embedding (Word2Vec) and sound spectrum analysis (MFCC) using Convolutional Neural Network (CNN). Word2Vec is used to convert voice datasets into vector text representations, while MFCC is employed for feature extraction from the sound spectrum. The developed models were evaluated using an experimental dataset in Indonesian, and the Weighted Average Ensemble approach, which integrates both methods, achieved an accuracy of 70%. These results indicate that integrating Word Embedding technology and sound spectrum analysis can significantly enhance the accuracy of emotion recognition in Indonesian conversations. This research contributes significantly to the development of emotion recognition technology and has the potential to improve human interaction with technology, as well as applications in sentiment analysis and natural language processing.

 File Digital: 1

Shelf
 S-Mohammad Darrel Tristan Budiroso.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2024
Bahasa : ind
Sumber Pengatalogan : LIbUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xii, 47 pages : illustration
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-24-55908339 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920544758
Cover