https://access.unram.ac.id/wp-content/

UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Analisis dan Pemodelan Pendeteksi Anomali pada Data yang Tidak Seimbang Menggunakan Generative Adversarial Network (GAN) = Analysis and Modeling of Anomaly Detection on Imbalanced Data Using Generative Adversarial Networks (GANs)

Jonathan Marshell Kevin; Naufan Raharya, supervisor; Aries Subiantoro, examiner; Abdul Halim, examiner; Benyamin Kusumoputro, examiner (Fakultas Teknik Universitas Indonesia, 2024)

 Abstrak

Dalam sistem industri modern, dengan majunya teknologi Internet of Things (IoT), pelaku industri dapat merekam data mesin dan sistem untuk kemudian dianalisa secara lebih komprehensif. Salah satu bentuk analisa yang dapat dilakukan adalah mendeteksi apakah ada anomali dari mesin atau sistem tsb. Aktivitas ini kemudian menjadi krusial bagi pelaku industri karena berdasarkan analisa ini, jika ditemukan anomali, maka secara dini dapat diambil tindakan yang diperlukan untuk melakukan pemeliharaan. Tetapi, sangat umum bagi pelaku industri tidak memiliki atau kekurangan data anomali, terutama pada sistem yang baru beroperasi. Dalam tesis ini, kami mengembangkan sebuah model untuk mendeteksi anomali pada data yang tidak berimbang dari sistem Secure Water Treatment (SWaT). Performa dari model ini kemudian dibandingkan dengan metode lain dari riset sebelumnya, mendemonstrasikan peningkatan dalam kapabilitas mendeteksi anomali.

In modern industrial systems, particularly with the advancement of the Internet of Things (IoT), industry players can record machine and system data for comprehensive analysis. One such analysis involves detecting anomalies in machines or systems. This activity becomes crucial because, if an anomaly is found in the data, corrective actions can be taken promptly. However, it is common for manufacturers to lack recorded anomaly datasets, especially for newly operational systems. In this paper, we develop a model to detect anomalies in an imbalanced dataset from the Secure Water Treatment (SWaT) system. The performance of the proposed model is compared with previous works, demonstrating significant improvements in anomaly detection capabilities.

 File Digital: 1

Shelf
 T-Jonathan Marshell Kevin.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2024
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : x, 54 pages : illustration
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T-pdf 15-24-86901063 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920543967
Cover