https://access.unram.ac.id/wp-content/

UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Generative Adversarial Network dalam Memprediksi Indeks Harga Saham LQ45 = Generative Adversarial Network in Predicting LQ45 Stock Price Index

Nafisya Alya Aurelitha; Mila Novita, supervisor; Gianinna Ardaneswari, supervisor; Bevina Desjwiandra Handari, examiner; Maulana Malik, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024)

 Abstrak

Indeks Harga Saham LQ45 adalah indeks yang mengukur kinerja harga 45 saham yang memiliki likuiditas tinggi dan kapitalisasi pasar besar yang tercatat di Bursa Efek Indonesia. Prediksi Indeks Harga Saham LQ45 dapat digunakan untuk mengukur kinerja suatu portofolio saham di masa yang akan datang sehingga investor dapat melakukan evaluasi terhadap saham-saham yang dimilikinya. Prediksi Indeks Harga Saham LQ45 merupakan suatu tugas yang sulit karena data indeks harga saham ini cenderung memiliki fluktuasi yang cukup tinggi. Untuk itu, diperlukan suatu teknik yang tepat dalam memprediksi Indeks Harga Saham LQ45. Indeks Harga Saham LQ45 merupakan salah satu jenis data runtun waktu. Beberapa model telah dikembangkan dalam memprediksi data runtun waktu, salah satunya adalah machine learning. Generative Adversarial Network (GAN) merupakan salah satu pendekatan khusus untuk machine learning melalui pemodelan generatif. GAN dapat menghasilkan prediksi yang memiliki keakuratan yang tinggi, karena GAN menggunakan dua jaringan, yaitu generator dan diskriminator. Long Short-Term Memory (LSTM) digunakan sebagai generator untuk mempelajari data dan melakukan prediksi serta Convolutional Neural Network (CNN) digunakan sebagai diskriminator untuk mengklasifikasi data. Oleh karena itu, dalam tugas akhir ini, penulis menerapkan GAN dalam prediksi Indeks Harga Saham LQ45. Penerapan metode ini bertujuan untuk meningkatkan akurasi dalam prediksi sehingga investor dapat mengukur kinerja portofolio sahamnya di masa yang akan datang dengan baik. Data yang digunakan dalam tugas akhir ini adalah harga penutupan atau closing Indeks Harga Saham LQ45 harian dari periode 2 Januari 2019 hingga 30 Desember 2022. Hasil prediksi Indeks Harga Saham LQ45 dapat ditunjukkan dengan nilai MAPE. Untuk data training memiliki nilai MAPE sebesar dan untuk data testing memiliki nilai MAPE sebesar perbandingan 80% data training dan 20% data testing.

The LQ45 Stock Price Index is an index that measures the price performance of 45 stocks that have high liquidity and large market capitalization listed on the Indonesia Stock Exchange. The LQ45 Stock Price Index prediction can be used to measure the performance of a stock portfolio in the future so that investors can evaluate the shares they own. Predicting the LQ45 Stock Price Index is a difficult task because this stock price index data tends to have quite high fluctuations. For this reason, an appropriate technique is needed to predict the LQ45 Stock Price Index. The LQ45 Stock Price Index is a type of time series data. Several models have been developed to predict time series data, one of which is machine learning. Generative Adversarial Network (GAN) is a special approach to machine learning through generative modeling. The GAN method can produce predictions that have high accuracy, because GAN uses two networks, namely generator and discriminator. Long Short-Term Memory (LSTM) is used as generator to study data and make predictions and Convolutional Neural Network (CNN) is used as discriminator to classify data. Therefore, in this thesis, the author applies the GAN method in predicting the LQ45 Stock Price Index. The application of this method aims to increase accuracy in predictions so that investors can measure the performance of their stock portfolio in the future properly. The data used in this thesis is the daily closing price of the LQ45 Stock Price Index from the period 2 January 2019 to 30 December 2022. The prediction results of the LQ45 Stock Price Index can be shown by the MAPE value. For training data, the MAPE value is 20,9340% and for testing data, the MAPE value is 2,3740%. These results use a comparison of 80% training data and 20% testing data.

 File Digital: 1

Shelf
 S-Nafisya Alya Aurelitha.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiv, 128 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-24-52854855 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920541815
Cover