UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Segmentasi Pengguna Halodoc Berdasarkan Status Sosial Menggunakan Data Mining Dengan Algoritma K-Prototypes Clustering = Halodoc's Consumer Segmentation Based on Social Status Using Data Mining Techniques with K-Prototypes Clustering Algorithm

Filda Maharani Hasanah; Rianti Setiadi, supervisor; Yekti Widyaningsih, supervisor; Dian Lestari, examiner; Gianinna Ardaneswari, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022)

 Abstrak

Telemedicine merupakan solusi ideal untuk menjadi layanan kesehatan di era COVID-19. Halodoc merupakan salah satu aplikasi telemedicine terbaik di Indonesia. Sejak tahun 2022, Halodoc sudah mempunyai lebih dari 15.000.000 pengguna sehingga perlu mengganti fokus bisnisnya dari product oriented menjadi customer oriented. Halodoc perlu melakukan analisis customer segmentation untuk mengetahui karakteristik pengguna lebih dalam. Analisis ini menggunakan salah satu teknik data mining yaitu clustering menggunakan algoritma K-Prototypes. Atribut penggunaan voucher, total transaksi, kategori produk, spesialis dokter, provider asuransi, kelompok usia, merek handphone, dan lokasi digunakan pada penelitian ini. Pengguna Halodoc yang melakukan transaksi minimal 1 kali selama November 2021 hingga Januari 2022 yang berjumlah 193.000 pengguna akan disegmentasi. Hasilnya adalah pengguna Halodoc dapat disegmentasi menjadi 4 status sosial yaitu working class, petty bourgeoise, middle class, dan high class. Status sosial yang memiliki ukuran terbesar adalah middle class yaitu dengan proporsi 46,69% dari keseluruhan pengguna. Pengguna yang paling potensial untuk Halodoc adalah yang berasal dari status sosial High Class karena memiliki frekuensi transaksi terbanyak dan nominal pengeluaran terbesar.

Telemedicine is the ideal solution to become a healthcare service in COVID-19 era. Halodoc is one of the best telemedicine applications in Indonesia. Since 2022, Halodoc has more than 15.000.000 users, so they need to change its business focus from product oriented to customer oriented. Halodoc needs to do customer segmentation analysis to find out more about user’s characteristics. This analysis uses one of data mining techniques which is K-Prototypes Clustering. Voucher usage, total transaction, doctor specialist, insurance provider, age group, mobile phones’s brand, and location are used in this study. Halodoc’s users who make transactions at least 1 time during November 2021 to January total 193.000 users will be segmented. The results is Halodoc’s users can be segmented into 4 social classes such as working class, petty bourgeoise, middle class, and high class. Social status that has the largest size is the middle class with the proportion of 46.69% of the total users. The most potential users for Halodoc are those from High Class social status because they have the highest transaction frequency and the largest nominal spending.

 File Digital: 1

Shelf
 S-Filda Maharani Hasanah.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xvi, 114 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-24-77814102 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920534942
Cover