https://access.unram.ac.id/wp-content/

Artikel Jurnal :: Kembali

Artikel Jurnal :: Kembali

Hand gesture recognition using adaptive network based fuzzy inference system and k-nearest neighbor

Fitri Utaminingrum (Faculty of Engineering, Universitas Indonesia, 2017)

 Abstrak

The purpose of the study was to investigate hand gesture recognition. The hand gestures of American Sign Language are divided into three categories—namely, fingers gripped, fingers facing upward, and fingers facing sideways—using the adaptive network-based fuzzy inference system. The goal of the classification was to speed up the recognition process, since the process of recognizing the hand gesture takes a longer time. All pictures in all of the categories were recognized using K-nearest neighbor. The procedure involved taking real-time pictures without any gloves or censors. The findings of the study show that the best accuracy was obtained when the epochs score was 10. The proposed approach will result in more effective recognition in a short amount of time.

 Metadata

Jenis Koleksi : Artikel Jurnal
No. Panggil : UI-IJTECH 8:3 (2017)
Entri utama-Nama orang :
Subjek :
Penerbitan : Depok: Faculty of Engineering, Universitas Indonesia, 2017
Sumber Pengatalogan : LibUI eng rda
ISSN : 20869614
Majalah/Jurnal : International Journal of Technology
Volume : Vol. 8, No. 3, April 2017: Hal. 559-567
Tipe Konten : text
Tipe Media : unmediated
Tipe Carrier : volume
Akses Elektronik : https://doi.org/10.14716/ijtech.v8i3.3146
Institusi Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 4 R. Koleksi Jurnal
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
UI-IJTECH 8:3 (2017) 08-23-03794118 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920533906
Cover