https://access.unram.ac.id/wp-content/

UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Pemodelan Dependensi antara Frekuensi dan Rata-rata Severitas Klaim Menggunakan Distribusi Bivariat Sarmanov = Modelling the Dependence between Frequency and Average Severity of Insurance Claims Using Bivariate Sarmanov Distribution

Arief Rahman Setiawan; Sindy Devila, supervisor; Rahmat Al Kafi, supervisor; Dian Lestari, examiner; Mila Novita, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023)

 Abstrak

Perusahaan asuransi adalah perusahaan yang menyediakan jasa agar nasabahnya dapat mentransfer risiko sehingga terdapat banyak risiko yang harus ditanggung oleh perusahaan. Oleh karena itu, perusahaan asuransi perlu menghitung klaim agregat agar perusahaan dapat memperkirakan berapa banyak klaim yang harus ditanggung sekaligus menentukan premi yang sesuai untuk nasabah. Klaim agregat dapat dihitung dengan menggunakan dua komponen, yaitu frekuensi dan severitas klaim. Pada umumnya, frekuensi dan severitas klaim diasumsikan independen atau saling bebas. Hal tersebut bertujuan agar perhitungan total klaim dapat dilakukan dengan mudah. Namun, frekuensi dan severitas klaim umumnya saling bergantung di kehidupan nyata, sehingga apabila asumsi independen antara frekuensi dan severitas klaim terus digunakan, maka perhitungan klaim agregat menjadi kurang tepat. Oleh karena itu, penelitian ini akan menggunakan asumsi bahwa terdapat dependensi antara frekuensi dan rata-rata severitas klaim untuk memodelkan klaim agregat dengan menggunakan distribusi bivariat Sarmanov. Distribusi bivariat Sarmanov dapat digunakan untuk mengukur dependensi positif maupun negatif antara frekuensi dan rata-rata severitas klaim dengan menghitung nilai dependensi Sarmanov. Pada skripsi ini, akan dijabarkan kasus khusus distribusi bivariat Sarmanov, di mana frekuensi klaim diasumsikan mengikuti distribusi Poisson dan Zero-Inflated Poisson, sedangkan rata-rata severitasnya diasumsikan berdistribusi Gamma. Berdasarkan data ilustrasi yang digunakan, didapatkan bahwa distribusi Zero-Inflated Poisson lebih cocok untuk memodelkan frekuensi klaim. Oleh karena itu, distribusi bivariat Sarmanov-nya dibangun berdasarkan distribusi Zero-Inflated Poisson dan distribusi Gamma. Kemudian, parameter distribusi bivariat Sarmanov diestimasi menggunakan MLE. Model yang diperoleh selanjutnya digunakan untuk mengestimasi premi murni dengan cara menghitung ekspektasi klaim agregat dan didapatkan nilai premi murni sebesar $180,8335.

An insurance company is a company that provides services so that its customers can transfer risks so that there are many risks that must be borne by the company. Therefore, insurance companies need to calculate aggregate claims so that the company can estimate how many claims must be covered while determining the appropriate premium for customers. Aggregate claims can be calculated using two components, namely frequency and severity of claims. In general, the frequency and severity of claims are assumed to be independent of each other. It is intended that the calculation of total claims can be done easily. However, the frequency and severity of claims generally depend on each other in real life, so that if the independent assumption between the frequency and severity of claims continues to be used, then the calculation of aggregate claims becomes less precise. Therefore, this study will use the assumption that there is a dependency between the frequency and the average severity of claims to model aggregate claims using the bivariate Sarmanov distribution. The bivariate Sarmanov distribution can be used to measure the positive and negative dependencies between the frequency and the average severity of claims by calculating the Sarmanov dependency value. In this thesis, a special case of the bivariate Sarmanov distribution will be described, where the frequency of claims is assumed to follow the Poisson distribution and Zero-Inflated Poisson distribution, while the average severity is assumed to be Gamma distribution. Based on the illustrative data used, it is found that the Zero-Inflated Poisson distribution is more suitable for modeling claim frequency. Therefore, the bivariate Sarmanov distribution is built on the basis of the Zero-Inflated Poisson distribution and the Gamma distribution. Then, the parameters of the bivariate Sarmanov distribution were estimated using MLE. The model obtained is then used to estimate pure premiums by calculating aggregate claims expectations and obtains a pure premium value of $180,8335.

 File Digital: 1

Shelf
 S-Arief Rahman Setiawan.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiii, 49 pages ; illustration ; 28 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-24-50930700 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920533468
Cover