UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Segmentasi White Matter Hyperintesities (WMH) Menggunakan Probabilistic TransUNet = White Matter Hyperintensities Segmentation Using Probabilistic TransUNet

Muhammad Noor Dwi Eldianto; Muhammad Febrian Rachmadi, supervisor; Wisnu Jatmiko, supervisor; Dina Chahyati, examiner; Ika Alfina, examiner; Widijanto Satyo Nugroho, examiner (Fakultas Ilmu Komputer Universitas Indonesia, 2023)

 Abstrak

White Matter Hyperintensities (WMH) adalah area di otak yang memiliki intensitas yang lebih tinggi dibandingkan dengan area normal lainnya pada hasil pemindaian Magnetic Resonance Imaging (MRI). WMH seringkali terkait dengan penyakit pembuluh kecil di otak, sehingga deteksi dini WMH sangat penting. Namun, terdapat dua masalah umum dalam mendeteksi WMH, yaitu ambiguitas yang tinggi dan kesulitan dalam mendeteksi WMH yang berukuran kecil. Dalam penelitian ini, kami mengusulkan metode yang disebut Probabilistic TransUNet untuk mengatasi masalah segmentasi objek WMH yang berukuran kecil dan ambiguitas yang tinggi pada citra medis. Kami melakukan eksperimen K-fold cross validation untuk mengukur kinerja model. Berdasarkan hasil eksperimen, model berbasis Transformer (TransUNet dan Probabilistic TransUNet) lebih baik dan presisi dalam melakukan segmentasi pada obyek WMH yang berukuran kecil, hal ini ditunjukkan oleh nilai Dice Similarity Coefficient (DSC) yang dihasilkan lebih tinggi dibandingkan dengan model berbasis Convolutional Nueral Networks (CNN) (U-Net dan Probabilistic U-Net). Penambahan probabilistic model dan pendekatan berbasis transformer berhasil mendapatkan performa yang lebih baik. Metode yang kami usulkan berhasil mendapatkan nilai DSC sebesar 0,744 dalam 5-fold cross validation, lebih baik dari metode sebelumnya. Dalam melakukan segmentasi objek kecil metode usulan kami mendapatkan nilai DSC sebesar 0,51.

White Matter Hyperintensities (WMH) are areas of the brain that have a higher intensity than other normal brain regions on Magnetic Resonance Imaging (MRI) scans. WMH is often associated with small vessel disease in the brain, making early detection of WMH important. However, there are two common issues in detecting WMH: high ambiguity and difficulty detecting small WMH. In this study, we propose a method called Probabilistic TransUNet to address the precision of small object segmentation and the high ambiguity of medical images. We conducted a k-fold cross-validation experiment to measure model performance. Based on the experiments, Transformer-based models (TransUNet and Probabilistic TransUNet) were found to provide more precise and better segmentation results, as demonstrated by the higher DSC scores obtained compared to CNN-based models (U-Net and Probabilistic U-Net) and their ability to segment small WMH objects. The proposed method obtained a DSC score of 0742 in k-fold cross-validation, better than the previous method. In conducting segmentation of small objects, our proposed method achieved a DSC score of 0,51.

 File Digital: 1

Shelf
 T-Muhammad Noor Dwi Eldianto.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiv, 61 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T-pdf 15-24-00269215 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920532423
Cover