UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Simulasi Sistem Pengendalian Temperatur dan Kelembaban pada Sistem Multiple Input Multiple Output (MIMO) Menggunakan Reinforcement Learning Algoritma Twin Delayed Deep Deterministic Policy Gradient Agent (TD3) = Simulation of Temperature and Humidity Control System in Multiple Input Multiple Output (MIMO) using Twin Delayed Deep Deterministic Policy Gradient Agent (TD3) Reinforcement Learning Algorithm

Yonathan; Surya Darma, supervisor; Prawito Prajitno, supervisor; Adhi Harmoko Saputro, examiner; Djati Handoko, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023)

 Abstrak

Penelitian ini melakukan proses simulasi pengendalian temperatur dan kelembaban pada sebuah pengendali MIMO, yang berkerja dengan mengatur temperatur air yang melewati heat-exchanger dan tingkat keaktifan humidifier untuk melakukan proses humidifikasi. Simulasi ini dilakukan menggunakan Agent Reinforcement Learninig dengan Algoritma Twin Delayed Deep Deterministic Policy Gradient Agent (TD3) pada perangkat lunak MATLAB dan Simulink. Tujuan dari penelitian ini adalah untuk mendapatkan respon pengendalian yang lebih baik dibanding pengendali umum PI Controller dengan membandingkan respon pengendalian yang dihasilkan berupa overshoot, settling time, rise time, dan steady state error. Batasan pada penlitian ini adalah perubahan temperatur yang dihasilkan dari proses pengendalian adalah 25°C dan perubahan kelembapan berada pada rentang +21% hingga – 60%. Didapatkan hasil Agent RL TD3 yang dapat melakukan proses kontrol sistem dengan performa yang jauh lebih baik dibandingkan PI Controller berdasarkan respon pengendalian yang dilakukan.

This research conducts a simulation process of temperature and humidity control in a Multiple Input Multiple Output (MIMO) controller, which operates by regulating the temperature of water passing through a heat exchanger and the activation level of a humidifier for the humidification process. The simulation is performed using Agent Reinforcement Learning with the Twin Delayed Deep Deterministic Policy Gradient Agent (TD3) algorithm in MATLAB and Simulink software. The objective of this study is to obtain better control responses compared to the conventional PI Controller by comparing the control responses in terms of overshoot, settling time, rise time, and steady-state error. The limitations of this study include temperature changes resulting from the control process being 25°C, and humidity changes ranging from +21% to -60%. The results show that the TD3 RL agent can control the system with significantly better performance than the PI Controller based on the control responses obtained.

 File Digital: 1

Shelf
 S-Yonathan.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xvii, 73 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-24-04504902 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920527976
Cover