UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Desain dan Analisis Pengembangan Sistem Kendali Otonom Quadcopter dalam Simulator Gazebo Menggunakan Metode Direct Inverse Control Berbasis Deep Neural Network dan Long-Short Term Memory = Design and Development Analysis of Autonomous Quadcopter Control System in Gazebo Simulator Using Direct Inverse Control Method Based on Deep Neural Network and Long-Short Term Memory

Thariq Hadyan; Benyamin Kusumoputro, supervisor; Aries Subiantoro, examiner; Feri Yusivar, examiner (Fakultas Teknik Universitas Indonesia, 2023)

 Abstrak

Quadcopter merupakan wahana terbang yang memiliki 4 rotor bersifat underactuated. Sifat quadcopter yang merupakan sistem yang kompleks akibat coupling antar variabelnya menjadikan desain pengendali yang cukup rumit. Diperlukan adanya pengendali yang mudah untuk dapat diaplikasikan pada quadcopter. Untuk melakukan percobaan pengaplikasian pengendali pada quadcopter, sistem pengendali tersebut harus dilakukan percobaan pada simulasi untuk mengetahui hasilnya. Oleh karena itu, peneliti mengusulkan pengendalian DIC yang berbasis deep neural networks (DNN) dan long-short term memory (LSTM) diujikan pada simulator sebelum akhirnya pada quadcopter asli. LSTM digunakan memiliki arsitektur pendukung untuk data sekuensial sebagaimana pergerakan trajektori. Sistem kendali dengan LSTM ini dihasilkan galat MSE yang lebih rendah dibanding DNN. Kinerja LSTM lebih baik dibandingkan dengan DNN. Selain itu, terdapat beberapa faktor – faktor terjadi peningkatan galat ketika diintegrasikan pada simulator Gazebo untuk bahan evaluasi terhadap pengendali berbasis yang sama diaplikasikan pada quadcopter aslinya.

Quadcopter is a flying vehicle that has 4 rotors that are underactuated. The nature of the quadcopter which is a complex system due to the coupling between the variables makes the controller design quite complicated. An easy controller is needed to be applied to the quadcopter. In order to experiment with the application of the controller on the quadcopter, the control system must be experimented with in a simulation to find out the results. Therefore, the researcher proposes that DIC control based on Deep Neural Network and Long-Short Term Memory be tested on a simulator before finally on a real quadcopter. LSTM is used to have a supporting architecture for sequential data as well as trajectory movement. The controller with this LSTM produces a lower MSE error than DNN. LSTM performance is better compared to DNN. In addition, there are several factors that increase the error when integrated into the simulator for evaluation of the same based controller applied to the original quadcopter.

 File Digital: 1

Shelf
 S-Thariq Hadyan.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2023
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xv, 69 pages ; illustration ; 28 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-24-71230434 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920526009
Cover