Sambungan las pada material perlu diuji dengan metode Non-Destructive Testing untuk memastikan spesifikasi desain dan fungsi material terpenuhi serta menjamin keamanan dan keandalan, karena cacat pada sambungan las dapat terjadi selama proses pengelasan. Deteksi cacat las merupakan bagian dari evaluasi citra radiografi yang dilakukan oleh ahli radiografi. Evaluasi citra radiografi dengan metode konvensional memiliki beberapa kekurangan, di antaranya proses pengolahan citra secara konvensional kompleks dan lama, hasil interpretasi yang terlalu subjektif, kurang konsisten terutama pada jumlah citra yang banyak, dan bias pada cacat yang serupa. Kekurangan ini dapat dikompensasi melalui otomatisasi evaluasi menggunakan algoritma deep learning dan computer vision berbasis YOLO. Penelitian ini membangun model deteksi dan segmentasi cacat las menggunakan arsitektur YOLOv8. Dataset yang digunakan adalah citra radiografi dengan bentuk penampang las horizontal dari database GDXRay dan citra radiografi elips (DWDV) dari hasil akuisisi dengan metode computed radiography. Penerapan teknik augmentasi citra geometri dan mosaik diterapkan untuk mengatasi keterbatasan dataset. Keluaran yang dihasilkan dari penelitian ini adalah model yang dibangun dapat melakukan deteksi dan segmentasi sebanyak 10 jenis cacat las, yaitu crack, cavity, excessive penetration, incomplete penetration, lack of fusion, porosity, slag inclusion, tungsten inclusion, undercut, dan worm-hole dengan nilai mAP untuk model yang dibangun dengan teknik augmentasi geometri adalah mAP50 = 0.798 dan mAP50-95 = 0.603 untuk bounding box, serta mAP50 = 0.790 dan mAP50-95 = 0.530 untuk mask. Sementara nilai mAP pada model yang dibangun dengan teknik augmentasi mosaik adalah mAP50 = 0.907 dan mAP50-95 = 0.743 untuk bounding box, serta mAP50 = 0.896 dan mAP50-95 = 0.648 untuk mask. Model deteksi dan segmentasi yang telah dibangun diharapkan dapat membantu operator dan ahli radiografi, serta calon operator dan ahli radiografi dalam mengevaluasi cacat las dengan lebih efisien dan akurat.
..Non-Destructive Testing needs to be performed on welded joints in materials to ensure that design specifications and material functions are fulfilled, as well as safety and reliability, due to defects in welded joints that may occur during the welding process. The evaluation of radiographic images includes the detection of weld defects by radiographers. Conventional radiographic image evaluation is more complex and time-consuming, subjective, inconsistent, especially in large numbers of images, and occasionally biased with respect to defects with similar features. This limitation can be compensated for by using YOLO-based deep learning and computer vision algorithms for evaluation automation. Using the YOLOv8 architecture, this study develops a detection and segmentation model for weld defects. A radiographic image with a horizontal weld region from the GDXRay database and an elliptical radiographic image (DWDV) from the acquisition using the computed radiography method represent the dataset. In order to overcome the limitations of the dataset, the geometric and mosaic image augmentation techniques were utilized. The mAP values for models built using the geometric augmentation are mAP50 = 0.798 and mAP50-95 = 0.603 for bounding boxes, and mAP50 = 0.790 and mAP50-95 = 0.530 for masks. Meanwhile, the mAP values for the model built using the mosaic augmentation are mAP50 = 0.907 and mAP50-95 = 0.743 for bounding boxes, and mAP50 = 0.896 and mAP50-95 = 0.648 for masks. The proposed model is able to detect and segment up to ten classes of weld defects, including cracks, cavities, excessive penetration, incomplete penetration, lack of fusion, porosity, slag inclusion, tungsten inclusion, undercut, and worm-hole. It is expected that the proposed detection and segmentation model will aid radiographers in evaluating weld defects more precisely and efficiently.