UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Klasifikasi Hasil Pengelasan: Pengembangan Convolutional Neural Network (CNN) Tahap Awal Untuk Pengelasan TIG (Tungsten Inert Gas) pada plat Aluminium AA1100 = Classification of Welding Results: Initial Development of Convolutional Neural Network (CNN) for Tungsten Inert Gas (TIG) Welding on AA1100 Aluminum Plate

Yoga Dwi Adityaputra; Ario Sunar Baskoro, supervisor; Saragih, Agung Shamsuddin, examiner; Jos Istiyanto, examiner (Fakultas Teknik Universitas Indonesia, 2022)

 Abstrak

Pada era digital ini kebutuhan manusia dalam teknologi semakin berkembang pesat. Teknologi selalu dituntut untuk berkembang untuk memudahkan manusia dalam memenuhi segala aktivitas dan kebutuhannya. Teknologi proses manufaktur adalah salah satunya. Proses manufaktur yang paling banyak digunakan dalam industri saat ini adalah pengelasan. Salah satu contoh teknologi yang berkembang adalah pengelasan otomatis TIG (Tungsten Inert Gas). Pada penelitian ini, dilakukan pengelasan aluminium paduan AA1100 dengan menggunakan pengelasan Tungsten Inert Gas (TIG) otomatis untuk mendapatkan data training neural network sebagai bahan pengklasifikasian hasil pengelasan. Dimensi spesimen yang digunakan dalam penelitian ini yaitu panjang 14 cm, lebar 7 cm serta ketebalan 3,8 mm. Penelitian ini bertujuan untuk membuat sistem pengklasifikasian hasil las yang baik dan buruk (ada cacat) menggunakan machine vision dan neural network sebagai tahap awal dalam penerapan CNN dalam automatic TIG welding serta untuk mengetahui akurasi, presisi dan loss dari sistem vision tersebut dari pre-trained model ResNet-50 dan YOLOv5n. Penelitian ini dimulai dengan mempelajari segala sesuatu tentang metode pengelasan TIG, mempelajari pengaruh-pengaruh apa saja yang dapat menyebabkan pengelasan gagal serta mempelajari metode machine learning untuk mengklasifikasikan hasil pengelasan yang baik maupun hasil pengelasan yang gagal pada material Aluminium AA1100. Selanjutnya dilakukan pengelasan untuk mengambil data acuan sebagai bahan dasar klasifikasi hasil pengelasan, lalu dataset tersebut dilakukan labelling dan di training menggunakan pre-trained model ResNet-50 dan YOLOv5n. Dua model yang terbuat dari hasil training tersebut kemudian di uji coba menggunakan 70 data test. Hasil dari tes tersebut yaitu: Pada tes dengan model YOLOv5s (epoch 50, batch 16 dan learning rate 0.001) menghasilkan nilai akurasi sebesar 88,57% dengan nilai item yang benar 45/50 dan 17/20. Model ini juga menghasilkan loss sebesar 11,42% dan precision sebesar 90%. Pada tes dengan model YOLOv5s dengan hyperparameter (epoch 100, batch 32 dan learning rate 0.001) menghasilkan nilai akurasi sebesar 97,14% dengan nilai item yang benar 49/50 dan 19/20, model ini juga menghasilkan loss sebesar 2,8% dan nilai precision sebesar 98%. Pada tes dengan model yang menggunakan architecture ResNet-50 dengan (epoch 50, batch 16 dan learning rate 0.001) menghasilkan nilai benar 43/50 dan 16/20 dengan nilai accuracy sebesar 84,28%, nilai loss 15,7% dan precision 86%. Untuk model ResNet-50 dengan hyperparameter (epoch 100, batch 32 dan learning rate 0.001) menghasilkan nilai akurasi sebesar 94,28% dengan nilai item yang benar 47/50 dan 19/20, model ini juga menghasilkan loss sebesar 5,71% dan nilai precision sebesar 94%.

In this digital era, human needs in technology are growing rapidly. Technology is always required to develop to make it easier for humans to fulfill all their activities and needs. Manufacturing process technology is one of them. The most widely used manufacturing process in industry today is welding. One example of a developing technology is TIG (Tungsten Inert Gas) automatic welding. In this study, welding of aluminum alloy AA1100 was carried out using automatic Tungsten Inert Gas (TIG) welding to obtain neural network training data as a material for classifying welding results. The dimensions of the specimens used in this study were 14 cm long, 7 cm wide and 3.8 mm thick. Welding is carried out with a fixed current, namely 120A and using filler ER5356. This study aims to create a classification system for good and bad (defective) welds using machine vision and neural networks as an initial step in applying CNN in automatic TIG welding and to determine the accuracy, precision and loss of the vision system from pre-trained models ResNet-50 and YOLOv5n. This research began by learning everything about the TIG welding method, learning what influences can cause welding to fail and studying the machine learning method to classify good welding results and failed welding results on Aluminum AA1100 material. Next, welding is carried out to retrieve reference data as the basis for the classification of welding results, then the dataset is labeled and trained using the pre-trained ResNet-50 and YOLOv5n models. The two models made from the results of the training were then tested using 70 test data. The results of the test are: The test with the YOLOv5s model (epoch 50, batch 16 and learning rate 0.001) produces an accuracy value of 88.57% with correct item values 45/50 and 17/20. This model also produces a loss of 11.42% and a precision of 90%. In tests with the YOLOv5s model with hyperparameters (epoch 100, batch 32 and learning rate 0.001) it produces an accuracy value of 97.14% with correct item values 49/50 and 19/20, this model also produces a loss of 2.8% and precision value of 98%. In the test with a model that uses architecture ResNet-50 with (epoch 50, batch 16 and learning rate 0.001) it produces a correct score of 43/50 and 16/20 with an accuracy value of 84.28%, a loss value of 15.7% and a precision of 86 %. For the ResNet-50 model with hyperparameters (epoch 100, batch 32 and learning rate 0.001) it produces an accuracy value of 94.28% with correct item values 47/50 and 19/20, this model also produces a loss of 5.71% and precision value of 94%.

 File Digital: 1

Shelf
 T-Yoga Dwi Adityaputra.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2022
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource (rdcarrier)
Deskripsi Fisik : xix, 82 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T-pdf 15-23-97829619 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920516747
Cover