Sistem penciuman elektronik telah dikembangkan dengan menggunakan kuarsa terlapis membran sebagai sensornya dan jaringan neural buatan Propagasi Balik (JNB-BP) sebagai sub-sistem pengenal polanya. Beberapa kelemahan penggunaan JNB-BP pada sistem penciuman elektronik adalah lamanya waktu pembelajaran dan adanya keterbatasan dalam mengenal pola aroma campuran. Untuk mengatasi masalah tersebut maka digunakan implementasi algoritma jaringan neural buatan berbasis Probabilistic Neural Network (JNB-PNN). JNB-PNN mempunyai 2 proses utama dalam tahap pembelajarannya yaitu menggunakan data pelatihan untuk membangun topologi JNB-PNN dan mencari parameter pemulus/smoothing parameter.
Pengujian yang dilakukan dengan mengklasifikasikan aroma campuran secara bertahan yaitu 6, 8, 12 dan 18 aroma. Tujuan daritahapan pengklasifikasian tersebut adalah untuk melihat kemampuan dari sistem dalam mengenai pola dari aroma campuran dengan membandingkan penggunaan JNB-BP dan JNB-PNN. Hasil kedua eksperimen menunjukkan bahwa semakin banyak pola aroma uamg diklasifikasin, tingkat pengenalan sistem semakin menurun. Kemampuan dari sistem penciuman elektronik yang menggunakan JNB-BP dalam mengenal 18 pola aroma menghasilkan tingkat pengenalan di bawah 70%. Sedangkan untuk JNB-PNN, walaupun terjadi penurunan terhadap pengenalan 18 pola yang diujikan, hasil pengenalannya masih di atas 90%.