https://access.unram.ac.id/wp-content/

Artikel Jurnal :: Kembali

Artikel Jurnal :: Kembali

Improvement of three mixture fragrance recognition using fuzzy similarity based self-organized network inspired by immune algorithm

by M.R. Widyanto and K. Hirota ([Publisher not identified] , 2003)

 Abstrak

To improve the recognition accuracy of a developed artificial odor discrimination system for three mixture fragrance recognition, Fuzzy similarity based Self-Organized Network inspired by Immune Algorithm (F-SONIA) is proposed.Minimum, average, and maximum values of fragrance data acquisition are used to form triangular fuzzy numbers. THen, the fuzzy similarity measure is used to define the relationship between fragrance inputs and connection strengths of hidden units. The fuzzy similarity is defined as the maximum value of the intersection region between triangular fuzzy set of hidden units. In experiments, performances of the proposed method is compared with the conventional self-organized Network inspired by Immune Algorithm (SONIA) and the Fuzzy Learning Vector Quantization (FLVQ). Experiments show that F-SONIA improves recognition accuracy of SONIA by 3-9%. Comparing to the previously developed artificial odor discrimination system that used FLVQ as pattern classifier, the recognition accuracy is increased by 14-15%.

 File Digital: 1

 Metadata

Jenis Koleksi : Artikel Jurnal
No. Panggil : JIKT-3-2-Okt2003-90
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Subjek :
Penerbitan : [Place of publication not identified]: [Publisher not identified], 2003
Sumber Pengatalogan :
ISSN :
Majalah/Jurnal : Jurnal Ilmu Komputer dan Teknologi Informasi
Volume : Vol. 3 (2) Oktober 2003: 90-95
Tipe Konten :
Tipe Media :
Tipe Carrier :
Akses Elektronik :
Institusi Pemilik : Universitas Indonesia
Lokasi :
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
JIKT-3-2-Okt2003-90 03-20-856647570 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 89140
Cover