Metoda klasifikasi Jaringan Syaraf Tiruan (JST) telah banyak diterapkan dalam bidang penginderaan jauh. Dalam penelitian ini dilakukan percobaan klasifikasi awan dengan menerapkan metoda JST Kohonen pada data citra multispektral satelit NOAA AVHRR. JST Kohonen adalah metoda klasifikasi tak terselia yang berbasis pada sistem pembelajaran kompetitif Self-Organizing Maps (SOM). Prosedur percobaan terdiri dari tiga tahap, yakni tahap pembelajaran, tahap pelabelan dan tahap klasifikasi.
Pada mulanya, klasifikasi awan dilakukan menggunakan lima kanal data citra sebagai vektor masukan, yakni kanal cahaya-tampak, infra-merah dekat, infra-merah tengah, dan dua kanal infra-merah termal. Hasil klasifikasi lalu dibandingkan dengan hasil klasifikasi visual untuk menentukan tingkat keberhasilannya. Kemudian, proses klasifikasi dilanjutkan untuk mengevaluasi kanal-kanal yang dominan dalam klasifikasi awan dengan cara mereduksi jurnlah kanal yang digunakan dalam klasifikasi.
Hasil percobaan menunjukkan bahwa klasifikasi awan menggunakan JST Kohonen memberikan tingkat keberhasilan yang cukup tinggi sebesar 81% untuk katagori 10 kelas atau 95% untuk 4 katagori utama 4 kelas awan, dengan kanal-kanal yang dominan yaitu kanal satu (cahaya-tampak) dan kanal empat (infra-merah termal).