https://access.unram.ac.id/wp-content/

UI - Disertasi Membership :: Kembali

UI - Disertasi Membership :: Kembali

Pengembangan Metode Kurvatur Sebagai Ekstraksi Fitur Dalam Sistem Pengenalan Wajah Bermasker = Development of Curvature Method as a Feature Extraction in Face Masked Recognition System

Regina Lionnie; Dadang Gunawan, promotor; Catur Apriono, co-promotor; Harry Sudibyo S., examiner; Basari, examiner; Mia Rizkinia, examiner; Siti Fauziyah Rahman, examiner; Ian Yoseph, examiner (Fakultas Teknik Universitas Indonesia, 2022)

 Abstrak

Sistem pengenalan wajah yang menggunakan pendekatan klasik sejauh ini belum dapat memberikan hasil optimal jika dihadapkan pada tantangan oklusi. Tantangan oklusi yang dikaji pada penelitian ini adalah saat wajah menggunakan masker. Jika seseorang menggunakan aplikasi sistem pengenalan wajah dengan harus membuka masker terlebih dahulu di tempat umum tentunya sangat berbahaya untuk keselamatan dan kesehatan semua pihak. Sehingga dibutuhkan sistem pengenalan wajah yang memiliki performa sistem yang tinggi dengan tantangan oklusi masker. Penelitian ini membangun sistem pengenalan wajah bermasker dengan pendekatan holistic dan partial face. Metode ekstraksi fitur yang digunakan adalah penggabungan metode kurvatur yang menggunakan turunan parsial orde satu dan dua dengan metode analitik seperti gray level co-occurrence matrix (GLCM) dan multi-resolution analysis (MRA) seperti transformasi wavelet diskrit (DWT), scale-space (SS) dan wavelet packet transform (WPT). Pada penelitian ini juga ditemukan kriteria baru (keterbaruan penelitian) yang dinamakan curvature best basis (CBB) untuk memilih basis pada algoritma best basis di dalam WPT. Kriteria baru pemilihan basis terbaik bersifat dinamis dan menggunakan nilai tertinggi dari ukuran statistik standar deviasi dari kurvatur rerata pada koefisien wavelet. Basis terbaik bekerja sebagai fitur terekstraksi yang bekerja di dalam sistem pengenalan. Penelitian ini dievaluasi menggunakan dataset RFFMDS v1.0, RFFMDS v2.0 EYB, dan UBIPr. Hasil penelitian menunjukkan bahwa sistem pengenalan wajah dengan tantangan oklusi masker berhasil dibangun menggunakan pendekatan holistic dengan akurasi pengenalan sistem sebesar 98,11% dan dengan pendekatan partial face dengan akurasi sebesar 98,80%. Kedua hasil akurasi terbaik ini diperoleh dengan metode curvature best basis. Performa sistem pengenalan yang menggunakan metode curvature best basis dengan pendekatan holistic maupun partial face menunjukkan performa tertinggi dibandingkan dengan performa penelitian sebelumnya.

The face recognition system has not been able to produce satisfactory results when it applies classical approach to handle occlusion problems. This research evaluated masked face as the occlusion problem. If someone wants to use the face recognition system, he or she needs to take off the mask to accurately use the device. This becomes a risk for the safety to all party. The needs to have a stable high performance face recognition system has arisen. This research built the face recognition system with two approaches, holistic approach and partial face approach. The feature extraction method was combination of curvature of the first and second order of partial derivative and analytical methods such as gray level co-occurrence matrix (GLCM) and multi-resolution analysis (MRA) of discrete wavelet transform (DWT), scale-space (SS), and wavelet packet transform (WPT). A new dynamic criterion inside WPT has been proposed using the highest standard deviation from the mean curvature of wavelet coefficients. The single selected best basis works as extracted feature inside recognition system and it is called curvature best basis. The recognition system was evaluated using RFFMDS v1.0, RFFMDS v1.0 EYB, and UBIPr datasets. The results showed that the accuracy of the holistic approach was 98,11% and the accuracy of the partial face approach was 98,80% for the masked face recognition system. Both results derived from the proposed curvature best basis. The recognition system’s performance with curvature best basis overcome the results from previous works.

 File Digital: 1

Shelf
 D-Regina Lionnie.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Disertasi Membership
No. Panggil : D-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2022
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xviii, 100 pages : illustration ; appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
D-pdf 07-22-90628614 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20529115
Cover