https://access.unram.ac.id/wp-content/

UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Analisis Pengelompokan Negara-Negara Berdasarkan Indikator Objektif Kualitas Hidup Menggunakan Algoritma K-prototypes dan Two Step Cluster (TSC) = K-prototypes and Two Step Cluster (TSC) Algorithm for Clustering Countries Based on The Objective Indicators of Quality of Life

Luthfi Azra Aulia; Sarini Abdullah, supervisor; Titin Siswantining, examiner; Devvi Sarwinda, examiner (Fakultas Kedokteran Universitas Indonesia, 2022)

 Abstrak

Kualitas hidup adalah suatu payung yang melingkupi variasi konsep fungsional, status kesehatan, persepsi, kondisi kehidupan, gaya hidup, dan kebahagiaan. Indikator dalam mengukur kualitas hidup terbagi menjadi dua, yakni indikator subjektif dan indikator objektif. Indikator subjektif berkaitan langsung dengan berbagai pengalaman yang seseorang alami dalam hidupnya. Di sisi lain, indikator objektif dikaitkan dengan wujud kepemilikan berbagai material atau faktor eksternal yang mempengaruhi berbagai pengalaman seseorang dalam menjalani kehidupannya. Pada penelitian ini, indikator objektif dipilih sebagai alat ukur kualitas hidup yang mencakup karakteristik sosial, ekonomi, kesehatan, dan lingkungan. Data yang digunakan dalam penelitian terdiri dari dua jenis data, yakni data numerik dan kategorik. Data yang digunakan merupakan data sekunder berisikan indikator objektif kualitas hidup di 82 negara pada tahun 2020. Adapun metode yang digunakan adalah algoritma K-prototypes dan Two Step Cluster (TSC) yang merupakan bagian dari metode pengelompokan nonhierarki dan hierarki serta dapat menangani data bertipe campuran (numerik dan kategorik). Hasil dari penelitian ini menunjukkan bahwa algoritma K-prototypes merupakan metode yang memberikan hasil lebih baik dalam mengelompokkan data penelitian dibandingkan algoritma TSC dengan nilai koefisien Silhouette sebesar 0,577, yang bermakna bahwa kelompok yang terbentuk telah memiliki struktur yang baik. Kelompok optimal yang terbentuk adalah sebanyak 2 kelompok yang disusun oleh 40 negara pada Kelompok 1 dan 42 negara pada Kelompok 2. Kelompok 2 cenderung memiliki profil kualitas hidup yang lebih baik dibandingkan Kelompok 1.

Quality of life is a phrase that covers a variety of functional concepts, health status, perception, living conditions, lifestyle, and happiness. Indicators in measuring quality of life are divided into two, namely subjective indicators and objective indicators. Subjective indicators are measured based on various experiences that people went through in life. On the other hand, objective indicators are measured based on various materials or external factors that affect a person's experiences in everyday life. In this study, objective indicators were chosen as quality measurement tools based on social, economic, health, and environmental characteristics. The data used in the study consisted of two types of data, namely numerical and categorical data. The data is secondary data containing objective indicators of quality of life in 82 countries in 2020. The method used in this research is the K-prototypes and Two Step Cluster (TSC) algorithm which is part of the non-hierarchical and hierarchical grouping method and can handle mixed-type data. The results of this study indicate that the K-prototypes algorithm is a method that gives better results than the TSC algorithm with a silhouette coefficient value of 0.577, which means that the formed group already has a good structure. The optimal groups formed are 2 groups composed of 40 countries in Group 1 and 42 countries in Group 2. Group 2 tends to have a better quality of life profile than Group 1.

 File Digital: 1

Shelf
 S-Luthfi Azra Aulia.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Jakarta: Fakultas Kedokteran Universitas Indonesia, 2022
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiv, 65 pages ; illustration ; 28 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-23-90282881 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20528365
Cover