UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Reduksi Dimensi pada Citra Hyperspectral untuk K-means Clustering Tinta Biru = Dimensionality Reduction on Hyperspectral Images for K-Means Clustering of Blue Inks

Nathasya Eliora Kristianti; Laksmita Rahadianti, supervisor; Aruni Yasmin Azizah, supervisor; Dina Chahyati, examiner; Erdefi Rakun, examiner (Fakultas Ilmu Komputer Universitas Indonesia, 2022)

 Abstrak

Citra hyperspectral merupakan citra yang menyimpan informasi spektrum elektromagnetik dengan jangkauan panjang gelombang tertentu secara kontinu untuk tiap pikselnya. Citra hyperspectral ini lebih kaya informasi dibanding citra RGB biasanya yang hanya menyimpan informasi dari warna merah, hijau, dan biru. Oleh karena itu, citra hyperspectral banyak digunakan di berbagai bidang, salah satunya untuk analisis tinta pada forensik dokumen. Dalam beberapa kasus, tinta yang berbeda distribusi spektranya dapat terlihat sama di mata manusia di bawah sumber cahaya tertentu. Fenomena ini disebut metamerism. Akan tetapi, tinta yang terlihat sama ini tidaklah sama dalam representasi hyperspectral. Penelitian ini bertujuan untuk mendapatkan representasi terbaik citra hyperspectral dengan menggunakan reduksi dimensi PCA dan t-SNE untuk melakukan pengelompokan K-means. Didapatkan hasil bahwa metode t-SNE merupakan hasil terbaik dalam beberapa eksperimen yang dilakukan dengan rata-rata precision 0.782 dan rata-rata recall 0,783. Diharapkan hasil penelitian ini dapat bermanfaat di bidang analisis dokumen

Hyperspectral images are images that store electromagnetic spectrum information with a certain range continuously for each pixel. These hyperspectral images contain a lot more information compared to the more common RGB image that only has red, blue, and green bands. Thus, hyperspectral images can be used in various applications, such as for ink analysis in document forensics. In some cases, inks with different spectral distribution may appear similar to the human eye due to metamerism. However, these similar looking inks are not similar in their hyperspectral representation. This research aims to obtain the best representation for hyperspectral images by using PCA and t-SNE dimensionality reduction to perform K-means clustering. From the results, we found that the t-SNE dimensionality reduction techniques gives the best result with average precision of 0,782 and average recall of 0,783. Hopefully this research can be useful for future works in document analysis.

 File Digital: 1

Shelf
 S-Nathasya Eliora Kristianti.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiv, 54 pages ; illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-23-17399742 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20524970
Cover