https://access.unram.ac.id/wp-content/

UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Kajian Spasial Produktivitas Tanaman Teh di Perkebunan Cianten PTPN VIII, Kabupaten Bogor, Jawa Barat = Spatial Study of Tea Productivity in Cianten PTPN VIII, Bogor Regency, West Java

Anjari Raiha Safitri; Adi Wibowo, supervisor; Revi Hernina, supervisor; Supriatna, examiner; Pin, Tjiong Giok, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022)

 Abstrak

Teh (Camellia sinensis L.) merupakan salah satu komoditas perkebunan yang mempunyai peran cukup penting pada perekonomian di Indonesia. Namun, terlihat bahwa terdapat penurunan ekspor teh di Indonesia yang diiringi dengan penurunan produksi teh setiap tahunnya sehingga diperlukan penguatan dan peningkatan produktivitas. Penginderaan jauh dapat menjadi sumber informasi penting untuk manajemen produksi pertanian seperti untuk melihat kondisi produktivitas lahan teh. Penelitian ini bertujuan untuk membangun model estimasi produktivitas tanaman teh terbaik menggunakan analisis statistik dan regresi linear sederhana dengan memanfaatkan algoritma NDVI, ARVI dan SAVI yang diperoleh dari pengolahan citra Sentinel-2 serta melihat hubungan antara aspek fisik dengan estimasi produktivitas teh. Hasil uji akurasi menggunakan RMSE menunjukkan bahwa indeks SAVI memiliki akurasi yang paling baik dalam melakukan estimasi produktivitas teh di Perkebunan Cianten PTPN VIII. Terlihat bahwa aspek fisik curah hujan tidak memiliki pengaruh yang cukup signifikan terhadap pertumbuhan tanaman teh, kelas ketinggian 900 – 1000 menunjukkan produktivitas yang tinggi serta kelas lereng datar (0 – 8%) memiliki produktivitas yang tinggi di Perkebunan Cianten. Setiap bulan, Perkebunan Cianten memiliki blok tanam yang tidak berproduksi. Tahun pangkas pada suatu blok akan mengakibatkan terhambatnya pertumbuhan teh yang dapat berpengaruh pada produktivitas.

Tea (Camellia sinensis L.) is one of the plantation commodities that has an important role in the economy in Indonesia. However, it can be seen that there is a decline in tea exports in Indonesia which is accompanied by a decrease in tea production every year so that it is necessary to strengthen and increase productivity. Remote sensing can be an important source of information for agricultural production management such as to see the condition of tea land productivity. This study aims to build the best tea plant productivity estimation model using statistical analysis and simple linear regression using the NDVI, ARVI and SAVI algorithms obtained from Sentinel-2 image processing and see the relationship between physical aspects and tea productivity estimates. The results of the accuracy test using RMSE show that the SAVI index has the best accuracy in estimating tea productivity at PTPN VIII's Perkebunan Cianten. Rainfall does not have a significant effect on the growth of tea plants, the altitude class 900 – 1000 shows high productivity and the flat slope class (0 – 8%) has high productivity in the Perkebunan Cianten. Every month, Perkebunan Cianten has planting blocks that are not producing. The year of pruning in a block will result in inhibition of tea growth which can affect productivity.

 File Digital: 1

Shelf
 S-Anjari Raiha Safitri.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xv, 104 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-23-09536491 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20521757
Cover