https://access.unram.ac.id/wp-content/

UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Pembangunan Instrumen Kolorimetri Pengklasifikasi Jenis Air Berbasis Smartphone Android = Development of Colorimetric Instruments for Classifying Water Types Based on Android Smartphones

Michida Budi Darmawan; Adhi Harmoko Saputro, supervisor; Sastra Kusuma Wijaya, examiner; Martarizal, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022)

 Abstrak

Air adalah komponen yang sangat penting untuk kehidupan manusia. Jenis air yang sangat berkaitan dengan manusia adalah air minum, air sanitasi, dan air kolam renang. Berdasarkan jenis air yang ada, instrumen yang sudah tersedia adalah dengan mengukur kadar kimia pada air menggunakan alat-alat laboratorium yang tidak efisien. Penelitian ini berfokus untuk membangun instrumen pengklasifikasi jenis air berbasis ponsel pintar untuk memudahkan pengklasifikasi jenis air. Instrumen yang dibangun memanfaatkan strip tes yang akan diakuisisi oleh kamera ponsel pintar. Selanjutnya citra akan dilatih menggunakan Deep Learning model CNN dengan arsitektur AlexNet dan ResNet50. Penggunaan DL sudah banyak dilakukan untuk mengklasifikasi citra dan hasilnya terbukti sangat baik. Model hasil pelatihan akan dijadikan sebagai server komputasi yang akan mengolah citra. Sisi klien merupakan aplikasi ponsel pintar dan dihubungkan ke server yang sudah dibangun. Hasil pelatihan model adalah arsitektur AlexNet dengan akurasi yang sangat tinggi yaitu sebesar 100%. Oleh karena itu, model AlexNet dijadikan server komputasi pada penelitian ini. Pembangunan aplikasi pengklasifikasi jenis air berhasil dibangun dengan arsitektur klien-server. Tingkat keberhasilan aplikasi adalah 100% dalam mengunggah dan mengolah citra. Berdasarkan hasil yang diperoleh, disimpulkan bahwa pembangunan instrument kolorimetri pengklasifikasi jenis air berbasis ponsel pintar android berhasil dibangun dengan sisi server mengimplementasikan model CNN arsitektur AlexNet.

Water is component that very important for human life. Some types of water human’s environments are drinking water, sanitary water, and swimming pool water. With these types of water, an instrument that are already available are to measure the chemical levels in water using laboratory equipment which is inefficient. This research focuses on building a smartphone-based water type classification instrument. The instrument being built will use the test strips that will be acquisition by the smartphone camera. Furthermore, the image will be trained using the Deep Learning CNN model with AlexNet and ResNet50 architectures. The use of DL has been widely used to classify images and the result is satisfying. The results of the training model will be used as a computing server that will process images. The client-side is a smartphone application and connected to a built-in server. The result of the training model is the AlexNet architecture has a high accuracy which is 100%. With this performance, AlexNet will be used as a computing server in this research. The development of the water type classifier application has been successfully built with a client-server architecture. The success rate is 100% in uploading and processing images. Based on the results obtained, it is concluded that the development of a colorimetric instrument for classifying water types based on an Android smart phone has been successfully built with the server side implementing CNN AlexNet architecture model.

 File Digital: 1

Shelf
 S-Michida Budi Darmawan.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiii, 65 pages : illustration
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-22-15787373 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20521366
Cover