https://access.unram.ac.id/wp-content/

UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Implementasi Algoritma Deteksi Objek Berdasarkan Deep Learning Yolov4 dan Jarak Euclidean pada CCTV Di Area Pertambangan PT X = Implementation of Object Detection Algorithm Based on Yolov4 Deep Learning and Euclidean Distance on CCTV in Mining Areas of PT X

Ravialdy Hidayat; Hendri Murfi, supervisor; Yudi Satria, examiner; Mila Novita, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022)

 Abstrak

Issue keselamatan atau safety merupakan salah satu capaian yang paling penting di industri pertambangan. Hal ini dikarenakan adanya kecelakaan kerja dapat berakibat fatal bagi intensitas produksi yang dapat dilakukan hingga berpotensi untuk terjadinya pencabutan izin operasional perusahaan oleh pemerintah. Pada PT X sendiri, pelanggaran atau deviasi yang berisiko sangat tinggi untuk terjadinya kecelakaan kerja yang mengakibatkan kematian adalah terkait dengan adanya manusia di area operasional pertambangan tanpa izin dan jarak tidak aman dari kendaraan-kendaraan yang ada, khususnya kendaraan dengan muatan berat seperti HD (Heavy Duty Dump Truck). Oleh karena itu, pada penelitian ini akan diusulkan metode deteksi objek yang berbasis deep learning YOLOv4 untuk mendeteksi objek manusia dan HD beserta penggunaan jarak Euclidean untuk estimasi jarak tidak aman antar kendaraan HD. Dengan menggunakan sebanyak 2009 gambar sebagai data latih dan sebanyak 201 gambar sebagai data uji, dihasilkan nilai mAP terbaik selama proses pelatihan model sebesar 88,76% dan nilai recall objek manusia dan HD pada sebanyak 10 video uji masing-masing sebesar 56,96% dan 55,73%. Nilai recall tersebut dapat meningkat cukup signifikan manakala teknologi CCTV dilakukan proses zoom in. Adanya penelitian ini diharapkan dapat membantu pengawas untuk mendeteksi deviasi-deviasi yang terjadi di area operasional pertambangan, khususnya untuk deteksi objek manusia dan HD beserta prediksi jarak tidak aman antar HD.

The safety issue is one of the most important achievements in the mining industry. This is because work accidents can be fatal for the intensity of production that can be carried out and the government has the potential to revoke the company's operating license. At PT X itself, violations or deviations that pose a very high risk for work accidents resulting in death are related to the presence of humans in the mining operational area without a permit and an unsafe distance from existing vehicles, especially vehicles with heavy loads such as HD. Therefore, in this study, an object detection method based on deep learning YOLOv4 will be proposed to detect human and HD (Heavy Duty Dump Truck) objects along with the estimation of unsafe distances between HD vehicles using euclidean distance method. By using as many as 2009 images as training data and as many as 201 images as test data, the best mAP value during the model training process is 88.76% and the recall value of human and HD objects in 10 test videos are 56.96% and 55.73%. The recall value can increase significantly when CCTV technology is zoomed in. The existence of this research is expected to help supervisors to detect deviations that occur in the mining operational area, especially for the detection of human objects and HD along with predictions of unsafe distances between HD.

 File Digital: 1

Shelf

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xii, 107 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-22-51161721 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20520515
Cover