Kanker kulit berasal dari lesi kulit yang memiliki penampilan atau pertumbuhan jaringan kulit yang tidak biasa. Melanoma adalah kanker kulit paling berbahaya dan menyebabkan banyak kematian jika tidak terdeteksi sedini mungkin. Pendeteksian sedini mungkin mendesak untuk dilakukan mengingat dapat meningkatkan angka
survival rate sebesar 95%. Cara pendeteksiaan saat ini yang menggunakan metode manual masih kurang handal dan memakan banyak waktu. Teknologi
deep learning dapat menjadi solusi yang dapat dimanfaatkan untuk melakukan segmentasi lesi kulit. Untuk penelitian ini, penulis mengusulkan penggunaan teknik Residual U-Net berbasis
deep-convolutional neural network untuk segmentasi lesi kulit. Teknik Residual U-Net yang diusulkan menggunakan Residual Block, Group Normalization, dan Tversky Loss ke dalam arsitektur berbasis U-Net. Penggunaan Residual Block dapat mengatasi permasalahan
error jaringan yang tinggi akibat adanya
vanishing gradient serta meningkatkan ekstraksi representasi fitur gambar. Model dilatih dan dievaluasi menggunakan dataset yang berasal dari
International Skin Imaging Collaboration (ISIC) 2018. Penelitian ini berhasil meningkatkan kinerja model dalam melakukan segmentasi lesi kulit dengan nilai
dice similarity coefficient, jaccard index, accuracy, sensitivity, specificity, dan
precision masing-masing, sebesar 0.86, 0.76, 0.93, 0.88, 0.96, dan 0.85.
Skin cancer originates from skin lesions that have an unusual appearance or growth of skin tissue. Melanoma is the most dangerous skin cancer and causes many deaths if not detected early. Early detection is urgent to do considering it can increase the survival rate by 95%. The current detection method using the manual method is still less reliable and takes a lot of time. Deep learning technology can be a solution that can be used to segment skin lesions. For this study, the authors propose the use of a Residual U-Net technique based on a deep-convolutional neural network for segmenting skin lesions. The proposed Residual U-Net technique uses Residual Block, Group Normalization, and Tversky Loss into a U-Net-based architecture. The use of Residual Block can overcome the problem of high network error due to the vanishing gradient and improve the extraction of image feature representation. The model was trained and evaluated using a dataset from the International Skin Imaging Collaboration (ISIC) 2018. This study succeeded in improving the model's performance in segmenting skin lesions with values ââof dice similarity coefficient, jaccard index, accuracy, sensitivity, specificity, and precision of 0.86, 0.76 , 0.93, 0.88, 0.96, and 0.85.