UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Perbandingan Klasifikasi X-Ray Paru-Paru Menggunakan Metode Transfer Learning Arsitektur MobileNetV2 dan EfficientNetB6 = Comparison of X-Ray Classification of the Lungs Using the MobileNetV2 and EfficientNetB6 Architecture Transfer Learning Methods

Hazel Raditya Mizumareru; Dadang Gunawan, supervisor; Mia Rizkinia, examiner; Naufan Raharya, examiner (Fakultas Teknik Universitas Indonesia, 2022)

 Abstrak

Pada beberapa tahun kebelakang perkembangan bidang machine learning telah mengalami kemajuan yang pesan dari berbagai domain dimana dibutuhkan sistem otomasi. Hal ini membuat model yang advanced seperti Deep Convolutional Neural Network dapat mencapai performa yang baik dalam melakukan klasifikasi, identifikasi objek hingga bahkan melebihi kemampuan manusia dalam beberapa domain. Salah satu aplikasi dari perkembangan ini adalah klasifikasi gambar terutama pada bidang medis misalnya pada klasifikasi paru-paru. Belakangan ini pandemi COVID-19 menjadi peristiwa yang cukup berdampak kepada dunia medis. Machine learning dapat membantu proses penanganan pandemi COVID-19 terutama dalam klasifikasi jenis penyakit pada paru-paru. Pada penelitian ini digunakan dataset hasil x-ray paru-paru COVID-19 radiography yang dibuat oleh kelompok riset dari Qatar. Pada dataset ini terdapat 4 kelas label yaitu paru-paru normal, Covid, Lung Opacity dan Viral Pneumonia yang akan diklasifikasi menggunakan model CNN berbasis transfer learning. Model yang digunakan pada penelitian ini adalah MobileNetV2 dan EfficientNetB6. Kemudian dilakukan penanganan imbalanced data dengan menggunakan metode upweighting, downsampling dan class weighting untuk mengangani dataset yang tidak rata. Didapatkan hasil klasifikasi terbaik dari model EfficientNetB6 dengan skema training 60: validasi 40 dengan akurasi 96.74%. Sedangkan untuk  model MobileNetV2 didapat hasil klasifikasi terbaik dengan skema training 60: validasi 40 dengan akurasi 94.28 %.  

Messages from various domains where automation systems are required have been incorporated into the machine learning field's development over the last few years. This enables sophisticated models, like Deep Convolutional Neural Networks, to perform well in classifying and object identification—even outperforming human capabilities in some cases. One use for this technology is image classification, particularly in the medical industry where the classification of the lungs is one example. A significant impact on the medical community has recently been caused by the COVID-19 pandemic. Machine learning can aid in the management of the COVID-19 pandemic, particularly in the classification of different lung disease types. Four label classes—normal lungs, Covid, lung opacity, and viral pneumonia—are present in this dataset and will be identified using a transfer learning-based CNN model. MobileNetV2 and EfficientNetB6 are the models that were used in this study. The EfficientNetB6 model, which had a training scheme of 60: 40 validation and an accuracy of 96.74 percent, produced the best classification results. The best classification outcomes for the MobileNetV2 model, meanwhile, were achieved with a training scheme of 60: 40 validation and an accuracy of 94.28 percent.

 File Digital: 1

Shelf
 S-Hazel Raditya Mizumareru.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2022
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xvi, 120 pages : illustration ; appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-22-49478203 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20518163
Cover