Baterai litium-ion merupakan teknologi yang menjanjikan untuk mendukung transisi energi berbasis fosil ke energi baru terbarukan pada kendaraan listrik yang ramah lingkungan karena kinerja penyimpanan energinya yang unggul. Penelitian material energi untuk baterai litium-ion terus dilakukan secara intensif hingga saat ini. Untuk mendukung hal tersebut, penelitian ini mensintesis Lithium Lanthanum Titanate ( LLTO, dengan formula kimia Li0,5La0,5TiO3) dari kombinasi lantanum oksalat lokal (95,296 % atomik lanthanum), litium karbonat komersial dan titanium oksida komersial melalui solid-state reaction yang sederhana dan berbiaya rendah. Dalam metode ini, digunakan kalsinasi dua tahap di mana tahap pertama dilakukan pada temperatur 800 °C selama 8 jam di bawah kondisi atmosfer biasa sedangkan tahap kedua dilakukan pada tiga variasi temperatur yakni 1.050 °C, 1.150 °C dan 1.250 °C selama 12 jam di bawah kondisi atmosfer biasa yang masing-masing menghasilkan 97,98, 98,141 dan 92,328 % berat Li0,5La0,5TiO3. LLTO yang disintesis pada temperatur kalsinasi kedua 1.150 °C menunjukkan luas permukaan dan volume pori yang paling besar, butir-butir tersusun secara acak dan memiliki sifat pseudokapasitansi sehingga memberikan kapasitas spesifik yang tinggi sebesar 17.120 mAh g-1 (pada C-rate 0,5 dan potensial yang mendekati nol) dan konduktivitas yang tinggi sekitar 2,45 × 10 -2 S/cm. LLTO ini menjanjikan untuk digunakan sebagai anoda potensial rendah dalam baterai litium-ion.
Lithium-ion battery is one of the promising technologies to support the transition of fossil-based energy to renewable energy in eco-friendly electric vehicles due to its superior energy storage performance. Research on energy materials for lithium-ion batteries continues to be carried out intensively to date. To support this plan, this research has synthesized Lithium Lanthanum Titanate (LLTO, with a chemical formula Li0,5La0,5TiO3) from a combination of local lanthanum oxalate (95.296 % atomic of lanthanum), commercial lithium carbonate, and commercial titanium oxide through a low-cost and simple solid-state reaction. In this method, a two-stage calcination method was used, where the first step was carried out at a temperature of 800 °C for 8 h under atmospheric conditions while the second step was carried out at three different temperatures namely 1050 °C, 1150 °C and 1250 °C for 12 h under atmospheric conditions yielding 97.98, 98.141 and 92.328 weight % of Li0,5La0,5TiO3, respectively. The LLTO synthesized at the second calcination temperature of 1150 °C exhibited largest surface area and pore volume, randomly arranged particles, and pseudocapacitive feature as to provide a high specific capacity of 17,120 mAh g-1 (at a C-rate 0, 5 and near-zero potentials) and a high conductivity of 2.45 × 10 -2 S/cm. This LLTO holds promise for use as a low-potential anode in lithium-ion batteries.