https://access.unram.ac.id/wp-content/

UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Evaluasi kinerja metode K-NN dengan beragam metode kalkulasi jarak dalam teknik Non-Intrusive Load Monitoring (NILM) = Performance Evaluation of K-NN methode with various distance calculation methods in Non-intrusive Load Monitoring (NILM) technique.

Fitra Hidiyanto; Abdul Halim, supervisor; Aries Subiantoro, examiner; Benyamin Kusumoputro, examiner; Feri Yusivar, examiner (Fakultas Teknik Universitas Indonesia, 2021)

 Abstrak

Non-Intrusive Load Monitoring (NILM) memungkinkan pendeteksian peralatan yang aktif atau tidak aktif bahkan karakteristik untuk setiap peralatan yang dipasang di rumah, industri, laboratorium, dll, dengan mendisagregasi total konsumsi listrik yang diukur di panel daya pusat. Penerapan NILM untuk energi efisiensi, manajemen energi, dan diagnosa peralatan di rumah tangga, industri atau penyedia energi telah menunjukkan peningkatan yang menjanjikan. Metode K-NN adalah salah satu metode machine learning yang paling sederhana dan umum digunakan untuk klasifikasi dengan kinerja yang baik dan bersaing dengan metode yang bahkan lebih kompleks. KNN memiliki 3 karakteristik yang dapat diubah dan dioptimalkan untuk memberikan hasil akurasi yang lebih baik, yaitu dari sisi data, algoritma jarak, dan nilai k. Dalam makalah ini metode K nearest neighbor (KNN) dilakukan pada data NILM AMPds2 yang memiliki load karakteristik yang mirip antar peralatan yang berbeda, dengan 9 algoritma jarak yang berbeda, 7 jumlah data training (10% -70%) dan dilakukan untuk variasi k ( 1-25) pada input daya Aktif serta input daya Aktif dan Reaktif untuk didapatkan hasil terbaik, Selain itu dilakukan juga metode Backpropagation Neural Network (BPNN) dengan variasi data training sebesar 25%, 50%, 75% dan 100%, jumlah hidden 10, 20 dan 30, dan jumlah iterasi 50000 dan 150000 dengan input daya aktif dan reaktif data dan 2 metode input yaitu input statis dan dinamis, dan pada akhirnya perbandingan kinerja antara metode KNN dan backpropagation untuk memisahkan data NILM AMPds2 telah dilakukan. Dari hasil pengujian dan penelitian didapatkan bahwa dengan menambahkan data daya reaktif sebagai input, hasil disagregasi pada data NILM yang mempunyai load karakteristik yang sama antara peralatan yang berbeda dengan metode KNN diperoleh akurasi lebih dari 20% lebih akurat sampai dengan 95% akurasi, dan memiliki nilai precision dan recall mencapai 0.9565, dan perbandingan performansi antara metode KNN input daya aktif dan reaktif dan metode backpropagation input daya aktif dan reaktif untuk memisahkan data NILM AMPds2 ke dalam kluster didapatkan hasil bahwa metode KNN input daya aktif dan reaktif memiliki akurasi yang bersaing dengan akurasi 95% sedangkan akurasi hasil backpropagation input dinamis 99.85%.

Non-Intrusive Load Monitoring (NILM) enables detection of appliances that are active or non-active even characteristics for each equipment installed in homes, industries, laboratories, etc by disaggregating total electrical consumption at the Central Power panel. The application of NILM for energy efficiency, energy management, and diagnostic equipment in households, industries or energy providers has shown promising improvement. The K-NN method is one of the most simple and commonly used machine learning methods for classifying with good performance and competing with even complex methods. K-NN has 3 characteristics that can be changed and optimized to provide better accuracy results, namely in terms of data, distance algorithm, and k value. In this paper the K nearest neighbor (KNN) method is performed on NILM AMPds2 data which having distinctive similar load characteristic between different appliances, with 9 different distances, 7 types of total training data (10% -70%) and performed for k (1-25) in single input (Active Power) and double input (Active and Reactive Power) for best result, In addition, the Backpropagation Neural Network (BPNN) methode was also carried out with variations in the training data amount of 25%, 50%, 75% and 100%, hidden number of 10, 20 and 30, and iterations number of 50000 and 150000 in double input data and 2 input methodes which are static input and dynamic input, and in the end performance comparison between KNN and backpropagation methods to disaggregate NILM AMPds2 data had done. From test and research results it was found that by adding reactive power data as input, the disaggregation results on NILM data which having distinctive similar load characteristic between different appliances with KNN methode were more than 20% accurate up to 95% accuracy and had higher precision and recall value also up to 0.9565, and also performance comparison between KNN double input and backpropagation double input methode to disaggregate NILM AMPds2 data into clusters result was found that KNN methode has shown good competitive result up to 95% accuracy while backpropagation with dynamic input accuracy result is 99.85 %.

 File Digital: 1

Shelf
 T-Fitra Hidiyanto .pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T-Pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2021
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xvii, 117 pages : illustration ; appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T-Pdf 15-22-24919128 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20514073
Cover