Klasifikasi stroke merupakan masalah yang harus diselesaikan dengan cepat dan tepat untuk menentukan pengobatan awal yang tepat bagi penderita stroke. Jika pengobatan awal yang tepat terlambat untuk dilakukan, maka hal ini dapat menyebabkan kecacatan bahkan kematian. Penelitian ini menyelesaikan masalah klasifikasi stroke menggunakan pendekatan machine learning dengan metode Minimally Spanned Support Vector Machine (MSSVM). Metode ini merupakan pengembangan dari metode Support Vector Machine (SVM) dimana metode ini mengaplikasikan algoritma Minimum Spanning Tree (MST) untuk mereduksi jumlah support vector pada SVM. Hal ini bertujuan untuk mempercepat waktu komputasi yang dibutuhkan oleh SVM dan meningkatkan kinerja SVM. Hal ini dikarenakan waktu komputasi yang dibutuhkan oleh SVM bergantung pada jumlah support vector dimana jumlah support vector yang semakin banyak memberikan waktu komputasi yang dibutuhkan semakin lama. Selain itu, pereduksian jumlah support vector dapat memberikan kesalahan generalisasi yang lebih kecil sehingga memberikan kinerja yang lebih baik. Pada penelitian ini, kinerja dari MSSVM dievaluasi dengan membandingkan beberapa parameter dengan kinerja SVM. Hasil yang diperoleh adalah bahwa MSSVM berhasil mereduksi jumlah support vector pada SVM sedemikian sehingga mempercepat waktu komputasi yang dibutuhkan oleh SVM dalam mengklasifikasikan data stroke tanpa mengurangi kinerja dari SVM.
Stroke classification is a problem that must be solved quickly and precisely to determine the right initial treatment for stroke sufferers. If the right initial treatment is too late to do so, this can cause disability and even death. This study solves the problem of stroke classification using a machine learning approach with Minimally Spanned Support Vector Machine (MSSVM) method. This method is a development of Support Vector Machine (SVM) method where this method applies the Minimum Spanning Tree (MST) algorithm to reduce the number of support vectors in SVM. This aims to speed up the computation time required by SVM and improve the performance of SVM. This is because the computation time required by SVM depends on the number of support vectors where the more support vectors give the required computation time longer. In addition, reducing the number of support vectors can provide smaller generalization errors, thus providing better performance. In this study, the performance of MSSVM was evaluated by comparing several parameters with the performance of SVM. The results obtained are that MSSVM has succeeded in reducing the number of support vectors in SVM thus accelerating the computational time needed by SVM in classifying stroke data without reducing SVM performance.